首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1077篇
  免费   70篇
  国内免费   12篇
  2023年   16篇
  2022年   30篇
  2021年   31篇
  2020年   32篇
  2019年   32篇
  2018年   47篇
  2017年   23篇
  2016年   26篇
  2015年   27篇
  2014年   49篇
  2013年   74篇
  2012年   38篇
  2011年   45篇
  2010年   43篇
  2009年   50篇
  2008年   55篇
  2007年   60篇
  2006年   35篇
  2005年   42篇
  2004年   52篇
  2003年   35篇
  2002年   35篇
  2001年   33篇
  2000年   28篇
  1999年   22篇
  1998年   24篇
  1997年   13篇
  1996年   10篇
  1995年   14篇
  1994年   12篇
  1993年   14篇
  1992年   11篇
  1991年   13篇
  1990年   12篇
  1989年   10篇
  1988年   12篇
  1987年   11篇
  1986年   7篇
  1985年   10篇
  1984年   11篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
排序方式: 共有1159条查询结果,搜索用时 15 毫秒
51.
《Current biology : CB》2019,29(11):1854-1865.e5
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   
52.
53.
Proper hyphal morphogenesis is essential for the establishment and progression of invasive disease caused by filamentous fungi. In the human pathogen Aspergillus fumigatus, signalling cascades driven by Ras and Ras‐like proteins orchestrate a wide variety of cellular processes required for hyphal growth. For activation, these proteins require interactions with Ras‐subfamily‐specific guanine nucleotide exchange factors (RasGEFs). Although Ras‐protein networks are essential for virulence in all pathogenic fungi, the importance of RasGEF proteins is largely unexplored. Afumigatus encodes four putative RasGEFs that represent three separate classes of RasGEF proteins (SH3‐, Ras guanyl nucleotide‐releasing protein [RasGRP]–, and LTE‐class), each with fungus‐specific attributes. Here, we show that the SH3‐class and RasGRP‐class RasGEFs are required for properly timed polarity establishment during early growth and branch emergence as well as for cell wall stability. Further, we show that SH3‐class RasGEF activity is essential for polarity establishment and maintenance, a phenotype that is, at least, partially independent of the major Afumigatus Ras proteins, RasA and RasB. Finally, loss of both SH3‐class RasGEFs resulted in avirulence in multiple models of invasive aspergillosis. Together, our findings suggest that RasGEF activity is essential for the integration of multiple signalling networks to drive invasive growth in Afumigatus.  相似文献   
54.
Hypothesized relationships between ontogenetic and phylogenetic change in morphological characters were empirically tested in centrarchid fishes by comparing observed patterns of character development with patterns of character evolution as inferred from a representative phylogenetic hypothesis. This phylogeny was based on 56–61 morphological characters that were polarized by outgroup comparison. Through these comparisons, evolutionary changes in character ontogeny were categorized in one of eight classes (terminal addition, terminal deletion, terminal substitution, non-terminal addition, non-terminal deletion, non-terminal substitution, ontogenetic reversal and substitution). The relative frequencies of each of these classes provided an empirical basis from which assumptions underlying hypothesized relationships between ontogeny and phylogeny were tested. In order to test hypothesized relationships between ontogeny and phylogeny that involve assumptions about the relative frequencies of terminal change (e.g. the use of ontogeny as a homology criterion), two additional phylogenies were generated in which terminal addition and terminal deletion were maximized and minimized for all characters. Character state change interpreted from these phylogenies thus represents the maxima and minima of the frequency range of terminal addition and terminal deletion for the 8.7 × 1036 trees possible for centrarchids. It was found for these data that terminal change accounts for c. 75% of the character state change. This suggests either that early ontogeny is conserved in evolution or that interpretation and classification of evolutionary changes in ontogeny is biased in part by the way that characters are recognized, delimited and coded. It was found that ontogenetic interpretation is influenced by two levels of homology decision: an initial decision involving delimitation of the character (the ontogenetic sequence), and the subsequent recognition of homologous components of developmental sequences. Recognition of phylogenetic homology among individual components of developmental sequences is necessary for interpretation of evolutionary changes in ontogeny as either terminal or non-terminal. If development is the primary criterion applied in recognizing individual homologies among parts of ontogenetic sequences, the only possible interpretation of phylogenetic differences is that of terminal change. If homologies of the components cannot be ascertained, recognition of the homology of the developmental sequence as a whole will result in the interpretation of evolutionary differences as substitutions. Particularly when the objective of a study is to discover how ontogeny has evolved, criteria in addition to ontogeny must be used to recognize homology. Interpretation is also dependent upon delimitation within an ontogenetic sequence. This is in part a function of the way that an investigator ‘sees’ and codes characters. Binary and multistate characters influence interpretation differently and predictably. The use of ontogeny for determining phylogenetic polarity as previously proposed rests on the assumptions that ancestral ontogenies are conserved and that character evolution occurs predominantly through terminal addition. It was found for these data that terminal addition may comprise a maximum of 51.9% of the total character state change. It is concluded that the ontogenetic criterion is not a reliable indicator of phylogenetic polarity. Process and pattern data are collected simultaneously by those engaged in comparative morphological studies of development. The set of alternative explanatory processes is limited in the process of observing development. These form necessary starting points for the research of developmental biologists. Separating ‘empirical’ results from interpretational influences requires awareness of potential biases in the course of character selection, coding and interpretation. Consideration of the interpretational problems involved in identifying and classifying phylogenetic changes in ontogeny leads to a re-evaluation of the purpose, usefulness and information conveyed by the current classification system. It is recommended that alternative classification schemes be pursued.  相似文献   
55.
Using a microinjection approach to study apical plasma membrane protein trafficking in hepatic cells, we found that specific inhibition of Vps34p, a class III phosphoinositide 3 (PI-3) kinase, nearly perfectly recapitulated the defects we reported for wortmannin-treated cells (Tuma, P.L., C.M. Finnegan, J.-H Yi, and A.L. Hubbard. 1999. J. Cell Biol. 145:1089-1102). Both wortmannin and injection of inhibitory Vps34p antibodies led to the accumulation of resident apical proteins in enlarged prelysosomes, whereas transcytosing apical proteins and recycling basolateral receptors transiently accumulated in basolateral early endosomes. To understand how the Vps34p catalytic product, PI3P, was differentially regulating endocytosis from the two domains, we examined the PI3P binding protein early endosomal antigen 1 (EEA1). We determined that EEA1 distributed to two biochemically distinct endosomal populations: basolateral early endosomes and subapical endosomes. Both contained rab5, although the latter also contained late endosomal markers but was distinct from the transcytotic intermediate, the subapical compartment. When PI3P was depleted, EEA1 dissociated from basolateral endosomes, whereas it remained on subapical endosomes. From these results, we conclude that PI3P, via EEA1, regulates early steps in endocytosis from the basolateral surface in polarized WIF-B cells. However, PI3P must use different machinery in its regulation of the apical endocytic pathway, since later steps are affected by Vps34p inhibition.  相似文献   
56.
Expression of the epithelial cell-specific heterotetrameric adaptor complex AP-1B is required for the polarized distribution of many membrane proteins to the basolateral surface of LLC-PK1 kidney cells. AP-1B is distinguished from the ubiquitously expressed AP-1A by exchange of its single 50-kD mu subunit, mu1A, being replaced by the closely related mu1B. Here we show that this substitution is sufficient to couple basolateral plasma membrane proteins, such as a low-density lipoprotein receptor (LDLR), to the AP-1B complex and to clathrin. The interaction between LDLR and AP-1B is likely to occur in the trans-Golgi network (TGN), as was suggested by the localization of functional, epitope-tagged mu1 by immunofluorescence and immunoelectron microscopy. Tagged AP-1A and AP-1B complexes were found in the perinuclear region close to the Golgi complex and recycling endosomes, often in clathrin-coated buds and vesicles. Yet, AP-1A and AP-1B localized to different subdomains of the TGN, with only AP-1A colocalizing with furin, a membrane protein that uses AP-1 to recycle between the TGN and endosomes. We conclude that AP-1B functions by interacting with its cargo molecules and clathrin in the TGN, where it acts to sort basolateral proteins from proteins destined for the apical surface and from those selected by AP-1A for transport to endosomes and lysosomes.  相似文献   
57.
The establishment of cell polarity in budding yeast involves assembly of actin filaments at specified cortical domains. Elucidation of the underlying mechanism requires an understanding of the machinery that controls actin polymerization and how this machinery is in turn controlled by signaling proteins that respond to polarity cues. We showed previously that the yeast orthologue of the Wiskott-Aldrich Syndrome protein, Bee1/Las17p, and the type I myosins are key regulators of cortical actin polymerization. Here, we demonstrate further that these proteins together with Vrp1p form a multivalent Arp2/3-activating complex. During cell polarization, a bifurcated signaling pathway downstream of the Rho-type GTPase Cdc42p recruits and activates this complex, leading to local assembly of actin filaments. One branch, which requires formin homologues, mediates the recruitment of the Bee1p complex to the cortical site where the activated Cdc42p resides. The other is mediated by the p21-activated kinases, which activate the motor activity of myosin-I through phosphorylation. Together, these findings provide insights into the essential processes leading to polarization of the actin cytoskeleton.  相似文献   
58.
During the cell cycle of the yeast Saccharomyces cerevisiae, the actin cytoskeleton and cell surface growth are polarized, mediating bud emergence, bud growth, and cytokinesis. We have determined whether p21-activated kinase (PAK)-family kinases regulate cell and actin polarization at one or several points during the yeast cell cycle. Inactivation of the PAK homologues Ste20 and Cla4 at various points in the cell cycle resulted in loss of cell and actin cytoskeletal polarity, but not in depolymerization of F-actin. Loss of PAK function in G1 depolarized the cortical actin cytoskeleton and blocked bud emergence, but allowed isotropic growth and led to defects in septin assembly, indicating that PAKs are effectors of the Rho-guanosine triphosphatase Cdc42. PAK inactivation in S/G2 resulted in depolarized growth of the mother and bud and a loss of actin polarity. Loss of PAK function in mitosis caused a defect in cytokinesis and a failure to polarize the cortical actin cytoskeleton to the mother-bud neck. Cla4-green fluorescent protein localized to sites where the cortical actin cytoskeleton and cell surface growth are polarized, independently of an intact actin cytoskeleton. Thus, PAK family kinases are primary regulators of cell and actin cytoskeletal polarity throughout most or all of the yeast cell cycle. PAK-family kinases in higher organisms may have similar functions.  相似文献   
59.
60.
Qi Y  Sun Y  Xu L  Xu Y  Huang H 《Planta》2004,219(2):270-276
In seed plants, formation of the adaxial–abaxial polarity is of primary importance in leaf patterning. Since Arabidopsis thaliana (L.) Heynh. genes ASYMMETRIC LEAVES1 (AS1) and ASYMMETRIC LEAVES2 (AS2) are key regulators in specifying adaxial leaf identity, and ERECTA is involved in the AS1/AS2 pathway for regulating adaxial–abaxial polarity [L. Xu et al. (2003) Development 130:4097–4107], we studied the physiological functions of the ERECTA protein in plant development. We analyzed the effects of different environmental conditions on a special leaf structure in the as1 and as2 mutants. This structure, called the lotus-leaf, reflects a severe loss of adaxial–abaxial polarity in leaves. Higher concentrations of salt or other osmotic substance and lower temperature severely affected plant growth both in the wild type and the mutants, but did not affect lotus-leaf frequency in the as1 and as2 mutants. as1 and as2 mutants exhibited a very low lotus-leaf frequency at 22°C, a temperature that favors Arabidopsis growth. The lotus-leaf frequency rose significantly with an increase in growth temperature, and only in plants that are in the erecta mutation background. These results suggest that ERECTA function is required for reducing plant sensitivity to heat stress during adaxial–abaxial polarity formation in leaves.Abbreviations AS1, AS2 ASYMMETRIC LEAVES1, 2 - ER ERECTA  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号