首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24011篇
  免费   1144篇
  国内免费   1332篇
  2023年   199篇
  2022年   286篇
  2021年   395篇
  2020年   419篇
  2019年   525篇
  2018年   576篇
  2017年   422篇
  2016年   463篇
  2015年   571篇
  2014年   980篇
  2013年   1451篇
  2012年   769篇
  2011年   1047篇
  2010年   690篇
  2009年   1046篇
  2008年   1184篇
  2007年   1228篇
  2006年   1217篇
  2005年   1082篇
  2004年   994篇
  2003年   954篇
  2002年   826篇
  2001年   556篇
  2000年   586篇
  1999年   592篇
  1998年   519篇
  1997年   510篇
  1996年   479篇
  1995年   494篇
  1994年   467篇
  1993年   428篇
  1992年   391篇
  1991年   358篇
  1990年   354篇
  1989年   338篇
  1988年   340篇
  1987年   300篇
  1986年   254篇
  1985年   319篇
  1984年   346篇
  1983年   259篇
  1982年   300篇
  1981年   216篇
  1980年   193篇
  1979年   140篇
  1978年   67篇
  1977年   64篇
  1976年   67篇
  1973年   41篇
  1972年   51篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
31.
Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1–2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of NO.  相似文献   
32.
Comparative two-dimensional electrophoresis showed six proteins, which were significantly produced in the root of salt-tolerant barley. These proteins were identified as stress/defense-related proteins that do not scavenge reactive oxygen species directly, suggesting that salt-tolerant barley develops not only an antioxidative system, but also physical and biochemical changes to cope with salt stress.  相似文献   
33.
34.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   
35.
Despite years of investigation, pathogenesis of necrotizing enterocolitis (NEC) remains elusive. Bacterial metabolites were implicated by several authors but their roles remain controversial. The aim of our study was to investigate the role of SCFAs and polyamines through a kinetic study of histological and macroscopical digestive lesions in monobiotic quails. Germ-free quails, inoculated with a Clostridium butyricum strain involved in a NEC case, were fed or not with a diet including lactose (7%). Quails were sacrificed at various times between D7 and D24 after bacterial inoculation. NEC-like lesions, i.e. thickening, pneumatosis, and hemorrhages, occurred only in lactose-fed quails and increased with time. The main histological characteristics were infiltrates of mononuclear cells, then heterophilic cells, then gas cyst and necrosis. The first event observed, before histological and macroscopical lesions, is a high production of butyric acid, which precedes an increase of iNOS gene expression. No difference in polyamines contents depending on the diet was observed. These results show the major role of butyric acid produced by commensal bacteria in the onset of the digestive lesions.  相似文献   
36.
《Theriogenology》2015,84(9):1402-1407
High ambient temperature during summer in tropical and subtropical countries predisposes water buffaloes (Bubalus bubalis) to develop oxidative stress having antigonadotropic and antisteroidogenic actions. Melatonin is a regulator of seasonal reproduction in photoperiodic species and highly effective antioxidant and free radical scavenger. Therefore, a study was designed to evaluate the effect of sustained-release melatonin on biomarkers of oxidative stress i.e., the serum malondialdehyde (MDA) and nitric oxide (NO), and the total antioxidant capacity (TAC). For the study, postpartum buffaloes diagnosed as summer anestrus (absence of overt signs of estrus, concurrent rectal examination, and RIA for serum progesterone) were grouped as treated (single subcutaneous injection of melatonin at 18 mg/50 kg body weight dissolved in sterilized corn oil as vehicle, n = 20) and untreated (subcutaneous sterilized corn oil, n = 8). Blood sampling for estimation of serum TAC and MDA (mmol/L) and NO (μmol/L) was carried out at 4 days of interval from 8 days before treatment till 28 days after treatment or for the ensuing entire cycle length. Results showed serum TAC concentration was higher in the treatment group with a significant (P < 0.05) increasing trend, whereas MDA and NO revealed a significant (P < 0.05) decline. Serum MDA and NO were higher in control compared with those of treatment group. Moreover, buffaloes in the treatment group showed 90% estrus induction with 18.06 ± 1.57 days mean interval from treatment to the onset of estrus. These results report that melatonin has a protective effect by elevating antioxidant status and reducing oxidative stress resulting in the induction of cyclicity in summer-stressed anestrous buffaloes.  相似文献   
37.
《植物生态学报》2015,39(8):816
Aims Fractal root system is phenotypic plasticity result of plant root architecture to respond to environmental heterogeneity, may reflect the growth strategy of plants to adapt to environmental conditions. Our objective was to explore the relationship between root fractal dimension and fractal abundance of fractal root system of Melica przewalskyi population in response to aspect variation in the northwest of China. Methods The study site was located in a degraded alpine grassland on the northern slope in Qilian Mountains, Gansu Province, China. Survey and sampling were carried out at 40 plots which were set up along four slope aspects transects with 20 m distance between adjacent plots. Handheld GPS was used to determine the elevation, longitude and latitude of each plot. ArcGIS was used to set up digital elevation model (DEM). Community traits were investigated and six individuals roots of M. przewalskyi were collected randomly at each plot. The samples were cleaned and divided into different organs, then scanning the root with the Win-RHIZO for measurements of fractal dimension and fractal abundance in laboratory, and their biomass were then measured after being dried at 80 °C in an oven. Important findings With the slope aspect turned from north to east, west, and south, the density, height and soil moisture content of the plant community displayed a pattern of initial decline, the height, density, root fractal abundance of M. przewalskyi increased and the root fractal dimension decreased. The root fractal dimension was negatively associated with the fractal abundance in all aspects, but the relationship varied along the slope aspects gradient; there was a highly significant negative correlation (p < 0.01) between the root fractal dimension and fractal abundance at north slope and south slope aspect, whereas the correlation only reached a significant level (p < 0.05) at the east slope aspect and west slope aspect; indicating that there is a trade-off between the root fractal dimension and fractal abundance. In addition, when the slope aspect changed from north to east, west and south, the standardized major axis (SMA) slope of the regression equation in the scaling relationships between root fractal dimension and fractal abundance increased (p < 0.05), indicating that the roots of M. przewalskyi at the droughty southern slope have less branch and more sparse in the same soil volume of root exploitation and utilization. Consequently, the resource allocation pattern on reasonable trade-off between root fractal dimension and fractal abundance in different slope aspect of M. przewalskyi, reflects the relationship between the income and the cost of construction of plant root architecture.  相似文献   
38.
Aqueous extracts of smoke, derived from Themeda triandra, a fire-climax grass, and Passerina vulgaris, a fynbos plant, stimulated the growth of primary root sections of tomato roots in suspension culture. The optimal dilution for both extracts was 1:2000. Several of the fractions obtained from TLC separation of the Themeda and the Passerina extracts significantly promoted primary root growth. The auxins naphthaleneacetic acid (NAA), indolebutyric acid (IBA) and indoleacetic acid (IAA) were found to stimulate the growth of the primary root axis, with IAA and NAA significantly promoting lateral root number. Similarly, the naturally occurring cytokinins, zeatin and its derivatives (zeatin-O-glucoside; dihydrozeatin and zeatin riboside) stimulated primary root length. Zeatin and dihydrozeatin promoted secondary root growth, but only at very low concentrations.  相似文献   
39.
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+-ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+-ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+-ATPase, which is required for rice P use.  相似文献   
40.
《Free radical research》2013,47(2):82-88
Abstract

Endothelial dysfunction characterized by decreased nitric oxide (NO) bioavailability is the first stage of coronary artery disease. It is known that one of the factors associated with an increased risk of coronary artery disease is a high plasma level of uric acid. However, causative associations between hyperuricaemia and cardiovascular risk have not been definitely proved. In this work, we tested the effect of uric acid on endothelial NO bioavailability. Electrochemical measurement of NO production in acetylcholine-stimulated human umbilical endothelial cells (HUVECs) revealed that uric acid markedly decreases NO release. This finding was confirmed by organ bath experiments on mouse aortic segments. Uric acid dose-dependently reduced endothelium-dependent vasorelaxation. To reveal the mechanism of decreasing NO bioavailability we tested the effect of uric acid on reactive oxygen species production by HUVECs, on arginase activity, and on acetylcholine-induced endothelial NO synthase phosphorylation. It was found that uric acid increases arginase activity and reduces endothelial NO synthase phosphorylation. Interestingly, uric acid significantly increased intracellular superoxide formation. In conclusion, uric acid decreases NO bioavailability by means of multiple mechanisms. This finding supports the idea of a causal association between hyperuricaemia and cardiovascular risk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号