首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   946篇
  免费   75篇
  国内免费   10篇
  2023年   6篇
  2022年   16篇
  2021年   29篇
  2020年   21篇
  2019年   30篇
  2018年   38篇
  2017年   50篇
  2016年   29篇
  2015年   32篇
  2014年   70篇
  2013年   89篇
  2012年   38篇
  2011年   40篇
  2010年   32篇
  2009年   43篇
  2008年   53篇
  2007年   39篇
  2006年   49篇
  2005年   26篇
  2004年   29篇
  2003年   25篇
  2002年   21篇
  2001年   13篇
  2000年   22篇
  1999年   15篇
  1998年   14篇
  1997年   10篇
  1996年   24篇
  1995年   15篇
  1994年   5篇
  1993年   9篇
  1992年   11篇
  1991年   12篇
  1990年   4篇
  1989年   15篇
  1988年   5篇
  1987年   9篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   6篇
  1977年   2篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1970年   1篇
排序方式: 共有1031条查询结果,搜索用时 15 毫秒
121.
The mechanism of vertebral shear failure is likely a bending moment generated about the pars interarticularis by facet contact, and the moment arm length (MAL) between the centroid of facet contact and the location of pars interarticularis failure has been hypothesised to be an influential modulator of shear failure force. To quantitatively evaluate this hypothesis, anterior shear of C3 over C4 was simulated in a finite element model of the porcine C3–C4 vertebral joint with each combination of five compressive force magnitudes (0–60% of estimated compressive failure force) and three postures (flexed, neutral and extended). Bilateral locations of peak stress within C3's pars interarticularis were identified along with the centroids of contact force on the inferior facets. These measurements were used to calculate the MAL of facet contact force. Changes in MAL were also related to shear failure forces measured from similar in vitro tests. Flexed and extended vertebral postures respectively increased and decreased the MAL by 6.6% and 4.8%. The MAL decreased by only 2.6% from the smallest to the largest compressive force. Furthermore, altered MAL explained 70% of the variance in measured shear failure force from comparable in vitro testing with larger MALs being associated with lower shear failure forces. Our results confirmed that the MAL is indeed a significant modulator of vertebral shear failure force. Considering spine flexion is necessary when assessing low-back shear injury potential because of the association between altered facet articulation and lower vertebral shear failure tolerance.  相似文献   
122.
The morphological characteristics of the pectoral fin spine were compared in three species of sturgeon, the Persian sturgeon (Acipenser persicus), the Russian sturgeon (Acipenser gueldenstaedtii), and the Starry sturgeon (Acipenser stellatus), all sampled from the Caspian Sea. On the basis of morphological characters of the pectoral fin spine, 62.2% of the individuals were correctly classified into separate groups. The cluster analysis also divided the three species into two major subgroups. Acipenser persicus and A. gueldenstaedtii were grouped together, suggesting a similar evolutionary basis. Significant morphological heterogeneity in pectoral fin spine characteristics was observed among the three sturgeon species. Principal component analysis identified the largest differences were in the pectoral fin spine size and the angle between distal pectoral fin spine and the horizontal line (A°). The first and second principal components (PC1 and PC2) of all observations accounted for 64.19% and 14.33% of the total variation, respectively. The combination of all analyses showed the relevance of applying pectoral fin spine shape for interspecific distinction of the three species of sturgeons.  相似文献   
123.
The Heteroptera show a diversity of glands associated with the epidermis. They have multiple roles including the production of noxious scents. Here, we examine the cellular arrangement and cytoskeletal components of the scent glands of pentatomoid Heteroptera in three families, Pentatomidae (stink bugs), Tessaratomidae, and Scutelleridae (shield-backed bugs or jewel bugs). The glands are; (1) the dorsal abdominal glands, (2) the tubular glands of the composite metathoracic gland, and (3) the accessory gland component of the composite metathoracic gland. The dorsal abdominal glands are at their largest in nymphs and decrease in size in adults. The metathoracic gland is an adult-specific gland unit with a reservoir and multiple types of gland cells. The accessory gland is composed of many unicellular glands concentrated in a sinuous line across the reservoir wall. The lateral tubular gland is composed of two-cell units. The dorsal abdominal glands of nymphs are composed of three-cell units with a prominent cuticular component derived from the saccule cell sitting between the duct and receiving canal. The cuticular components that channel secretion from the microvilli of the secretory cell to the exterior differ in the three gland types. The significance of the numbers of cells comprising gland units is related to the role of cells in regenerating the cuticular components of the glands at moulting in nymphs.  相似文献   
124.
《Developmental cell》2020,52(2):167-182.e7
  1. Download : Download high-res image (182KB)
  2. Download : Download full-size image
  相似文献   
125.
Daphnia hyalina is a cladoceran present throughthe whole year except for late summer in Maranhão,a meso-eutrophic reservoir in central Portugal. Apartfrom the influence of food, both vertebrate andinvertebrate predation pressures seem to have aneffect on D. hyalina population dynamics.Enclosure experiments were designed to assess therelative importance of both types of predation. Afterthe summer crash, D. hyalina reached highernumbers in the fishless enclosures than in the lakedespite of high predation pressure upon juveniles byAcanthocyclops robustus. Fish predation upon thelargest individuals, especially large egg bearingfemales, was responsible for the lower fertility ofthe open water population when compared with theenclosure population. In the enclosures an increase intail spine length was observed. The longer tail spineprobably offered protection from copepod predation,allowing at least some of the juveniles to coexistwith their potential predator and reach the adultstage, less susceptible to copepod predation.  相似文献   
126.
Lower back pain due to intervertebral disc (IVD) degeneration is a prevalent problem which drastically affects the quality of life of millions of sufferers. Healthy IVDs begin with high populations of notochordal cells in the nucleus pulposus, while by the second stage of degeneration, these cells will be replaced by chondrocyte-like cells. Because the IVD is avascular, these cells rely on passive diffusion of nutrients to survive. It is thought that this transition in cell phenotype causes the shift of the IVD's physical properties, which impede the flow of nutrients. Our computational model of the IVD illustrates its ability to simulate the evolving chemical and mechanical environments occurring during the early ageing process. We demonstrate that, due to the insufficient nutrient supply and accompanying changes in physical properties of the IVD, there was a resultant exponential decay in the number of notochordal cells over time.  相似文献   
127.
Translational vertebral motion during functional tasks manifests itself in dynamic loci for center of rotation (COR). A shift of COR affects moment arms of muscles and ligaments; consequently, muscle and joint forces are altered. Based on posture- and level-specific trends of COR migration revealed by in vivo dynamic radiography during functional activities, it was postulated that the instantaneous COR location for a particular joint is optimized in order to minimize the joint reaction forces. A musculoskeletal multi-body model was employed to investigate the hypotheses that (1) a posterior COR in upright standing and (2) an anterior COR in forward flexed posture leads to optimized lumbar joint loads. Moreover, it was hypothesized that (3) lower lumbar levels benefit from a more superiorly located COR.The COR in the model was varied from its initial position in posterior-anterior and inferior-superior direction up to ±6 mm in steps of 2 mm. Movement from upright standing to 45° forward bending and backwards was simulated for all configurations. Joint reaction forces were computed at levels L2L3 to L5S1. Results clearly confirmed hypotheses (1) and (2) and provided evidence for the validity of hypothesis (3), hence offering a biomechanical rationale behind the migration paths of CORs observed during functional flexion/extension movement. Average sensitivity of joint force magnitudes to an anterior shift of COR was +6 N/mm in upright and −21 N/mm in 30° forward flexed posture, while sensitivity to a superior shift in upright standing was +7 N/mm and −8 N/mm in 30° flexion. The relation between COR loci and joint loading in upright and flexed postures could be mainly attributed to altered muscle moment arms and consequences on muscle exertion. These findings are considered relevant for the interpretation of COR migration data, the development of numerical models, and could have an implication on clinical diagnosis and treatment or the development of spinal implants.  相似文献   
128.
Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models. Mesh-morphing method mitigates the aforementioned tediousness in meshing personalized geometries every time, but leads to element warping and loss of geometrical data. Such issues increase in magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each individual, which is time intensive. A method to semi-automate the construction of multi-blocks on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by morphing existing multi-blocks.  相似文献   
129.
小鼠脊髓-背根神经节细胞在体外共培养状态P物质神经元的形态在国内尚未见文献报道。我们利用体外培养及免疫细胞化学方法对P物质神经元的胞体及突起形态做了观察,发现背根神经节中P物质免疫反应阳性的胞体为圆形成近似圆形,胞体直径大约为28μm,突起较长,可有多级分枝。脊髓细胞中P物质反应阳性胞体多为圆形或椭圆形,胞体直径大约为13μm左右,其突起有单极、双极和多极。在这种共培养状态下,P物质阳性反应纤维均比较纤细,但有的少见膨体,有的则膨体多见  相似文献   
130.
The ultraviolet (UV) absorbance of the mucus of a Great Barrier Reef damselfish Pomacentrus amboinensis was investigated with regard to ontogeny and time spent in captivity. The UV absorbance of P. amboinensis mucus increased with fish size and decreased with time spent in captivity. The wavelength of maximum absorbance of the mucus did not change with fish size, but shifted towards shorter wavelengths with increasing time spent in captivity. The UV absorbance of the mucus of fish with 'fin rot' was compared to that of similar healthy individuals, and a significant decrease in UV absorbance of unhealthy fish mucus was detected; no wavelength shifting occurred. Pomacentrus amboinensis appears to sequester mycosporine-like amino acids from the diet in order to protect epithelial tissues from UV damage, and decreases in UV absorbance in captive fish were probably due to insufficient dietary availability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号