首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   0篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1996年   3篇
  1995年   1篇
  1992年   2篇
  1991年   2篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
51.
52.
The main roles of the DnaA protein are to bind the origin of chromosome replication (oriC), to unwind DNA and to provide a hub for the step-wise assembly of a replisome. DnaA is composed of four domains, with each playing a distinct functional role in the orisome assembly. Out of the four domains, the role of domain I is the least understood and appears to be the most species-specific. To better characterise Helicobacter pylori DnaA domain I, we have constructed a series of DnaA variants and studied their interactions with H. pylori bipartite oriC. We show that domain I is responsible for the stabilisation and organisation of DnaA-oriC complexes and provides cooperativity in DnaA–DNA interactions. Domain I mediates cross-interactions between oriC subcomplexes, which indicates that domain I is important for long-distance DnaA interactions and is essential for orisosme assembly on bipartite origins. HobA, which interacts with domain I, increases the DnaA binding to bipartite oriC; however, it does not stimulate but rather inhibits DNA unwinding. This suggests that HobA helps DnaA to bind oriC, but an unknown factor triggers DNA unwinding. Together, our results indicate that domain I self-interaction is important for the DnaA assembly on bipartite H. pylori oriC.  相似文献   
53.
An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 Å resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 Å). These structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.  相似文献   
54.
Summary Overexpression of DnaA protein from a multicopy plasmid accompanied by a shift to 42°C causes initiation of one extra round of replication in a dnaA + strain grown in glycerol minimal medium. This extra round of replication does not lead to an extra cell division, such that cells contain twice the normal number of chromosomes.  相似文献   
55.
56.
Summary Heat shock proteins have been shown to be involved in many cellular processes in procaryotic and eucaryotic cells. Using an in vitro DNA replication assay, we show that DNA synthesis initiated at the chromosomal origin of replication of Escherichia coli (oriC) is considerably reduced in enzyme extracts isolated from cells bearing mutations in the dnaK and dnaJ genes, which code for heat shock proteins. Furthermore, unlike DNA synthesis in wild-type extracts, residual DNA synthesis in dnaK and dnaJ extracts is thermosensitive. Although thermosensitivity can be complemented by the addition of DnaK and DnaJ proteins, restoration of near wild-type replication levels requires supplementary quantities of purified DnaA protein. This key DNA synthesis initiator protein is shown to be adsorbed to DnaK affinity columns. These results suggest that at least one of the heat shock proteins, DnaK, exerts an effect on the initiation of DNA synthesis at the level of DnaA protein activity. However, our observation of normal oriC plasmid transformation ratios and concentrations in heat shock mutants at permissive temperatures would suggest that heat shock proteins play a role in DNA replication mainly at high temperatures or under other stressful growth conditions.  相似文献   
57.
Summary DNA containing the Escherichia coli dam gene and sequences upstream from this gene were cloned from the Clarke-Carbon plasmids pLC29-47 and pLC13-42. Promoter activity was localized using pKO expression vectors and galactokinase assays to two regions, one 1650–2100 bp and the other beyon 2400 bp upstream of the dam gene. No promoter activity was detected immediately in front of this gene; plasmid pDam118, from which the nucleotide sequence of the dam gene was determined, is shown to contain the pBR322 promoter for the primer RNA from the pBR322 rep region present on a 76 bp Sau3A fragment inserted upstream of the dam gene in the correct orientation for dam expression. The nucleotide sequence upstream of dam has been determined. An open reading frame (ORF) is present between the nearest promoter region and the dam gene. Codon usage and base frequency analysis indicate that this is expressed as a protein of predicted size 46 kDa. A protein of size close to 46 kDa is expressed from this region, detected using minicell analysis. No function has been determined for this protein, and no significant homology exist between it and sequences in the PIR protein or GenBank DNA databases. This unidentified reading frame (URF) is termed urf-74.3, since it is an URF located at 74.3 min on the E. coli chromosome. Sequence comparisons between the regions upstream of urf-74.3 and the aroB gene show that the aroB gene is located immediately upstream of urf-74.3, and that the promoter activity nearest to dam is found within the aroB structural gene. This activity is relatively weak (about 15% of that of the E. coli gal operon promoter). The promoter activity detected beyond 2400 bp upstream of dam is likely to be that of the aroB gene, and is 3 to 4 times stronger than that found within the aroB gene. Three potential DnaA binding sites, each with homology of 8 of 9 bp, are present, two in the aroB promoter region and one just upstream of the dam gene. Expression through the site adjacent to the dam gene is enhanced 2-to 4-fold in dnaA mutants at 38°C. Restriction site comparisons map these regions precisely on the Clarke-Carbon plasmids pLC13-42 and pLC29-47, and show that the E. coli ponA (mrcA) gene resides about 6 kb upstream of aroB.  相似文献   
58.
Summary Flow cytometry was used to study initiation of DNA replication in Escherichia coli K12 after induced expression of a plasmid-borne dnaA + gene. When the dnaA gene was induced from either the plac or the pL promoter initiation was stimulated, as evidenced by an increase in the number of origins and in DNA content per mass unit. During prolonged growth under inducing conditions the origin and DNA content per mass unit were stabilized at levels significantly higher than those found before induction or in similarly treated control cells. The largest increase was observed when using the stronger promoter pL compared to plac. Synchrony of initiation was reasonably well maintained with elevated DnaA protein concentrations, indicating that simultaneous initiation of all origins was still preferred under these conditions. A reduced rate of replication fork movement was found in the presence of rifampin when the DnaA protein was overproduced. We conclude that increased synthesis levels or increased concentrations of the DnaA protein stimulate initiation of DNA replication. The data suggest that the DnaA protein may be the limiting factor for initiation under normal physiological conditions.  相似文献   
59.
In Escherichia coli, ATP-bound DnaA protein can initiate chromosomal replication. After initiation, DnaA-ATP is hydrolyzed by interactions with a complex containing a replicase subunit to yield the inactive ADP-DnaA. However, the mechanisms which regenerate ATP-DnaA from ADP-DnaA are not well understood. We report here that a 70-bp DNA segment promotes exchange of the DnaA-bound nucleotide in a sequence-specific manner, thus reactivating the initiation function of DnaA in vitro. This segment contains a typical DnaA-binding 9-mer motif, the DnaA box, and two DnaA box-like sequences. The presence and precise composition of these three motifs are required for the DnaA-reactivating activity, which suggests that a highly ordered complex which includes multimeric DnaA molecules is formed for isomerization of DnaA. We named this DNA segment DARS, for DnaA-reactivating sequence. The role of DARS in regulation of DnaA function in vivo is discussed.  相似文献   
60.
In Escherichia coli, ATP-DnaA multimers formed on the replication origin oriC promote duplex unwinding, which leads to helicase loading. Based on a detailed functional analysis of the oriC sequence motifs, we previously proposed that the left half of oriC forms an ATP-DnaA subcomplex competent for oriC unwinding, whereas the right half of oriC forms a distinct ATP-DnaA subcomplex that facilitates helicase loading. However, the molecular basis for the functional difference between these ATP-DnaA subcomplexes remains unclear. By analyzing a series of novel DnaA mutants, we found that structurally distinct DnaA multimers form on each half of oriC. DnaA AAA+ domain residues Arg-227 and Leu-290 are specifically required for oriC unwinding. Notably, these residues are required for the ATP-DnaA-specific structure of DnaA multimers in complex with the left half of oriC but not for that with the right half. These results support the idea that the ATP-DnaA multimers formed on oriC are not uniform and that they can adopt different conformations. Based on a structural model, we propose that Arg-227 and Leu-290 play a crucial role in inter-ATP-DnaA interaction and are a prerequisite for the formation of unwinding-competent DnaA subcomplexes on the left half of oriC. These residues are not required for the interaction with DnaB, nucleotide binding, or regulatory DnaA-ATP hydrolysis, which further supports their important role in inter-DnaA interaction. The corresponding residues are evolutionarily conserved and are required for unwinding in the initial complexes of Thermotoga maritima, an ancient hyperthermophile. Therefore, our findings suggest a novel and common mechanism for ATP-DnaA-dependent activation of initial complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号