首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   0篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1996年   3篇
  1995年   1篇
  1992年   2篇
  1991年   2篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
21.
ATP-DnaA binds to multiple DnaA boxes in the Escherichia coli replication origin (oriC) and forms left-half and right-half subcomplexes that promote DNA unwinding and DnaB helicase loading. DnaA forms homo-oligomers in a head-to-tail manner via interactions between the bound ATP and Arg-285 of the adjacent protomer. DnaA boxes R1 and R4 reside at the outer edges of the DnaA-binding region and have opposite orientations. In this study, roles for the protomers bound at R1 and R4 were elucidated using chimeric DnaA molecules that had alternative DNA binding sequence specificity and chimeric oriC molecules bearing the alternative DnaA binding sequence at R1 or R4. In vitro, protomers at R1 and R4 promoted initiation regardless of whether the bound nucleotide was ADP or ATP. Arg-285 was shown to play an important role in the formation of subcomplexes that were active in oriC unwinding and DnaB loading. The results of in vivo analysis using the chimeric molecules were consistent with the in vitro data. Taken together, the data suggest a model in which DnaA subcomplexes form in symmetrically opposed orientations and in which the Arg-285 fingers face inward to mediate interactions with adjacent protomers. This mode is consistent with initiation regulation by ATP-DnaA and bidirectional loading of DnaB helicases.  相似文献   
22.
Association of proteins to cellular membranes is involved in various biological processes. Various theoretical models have been developed to describe this adsorption mechanism, commonly implying the concept of an ideal solution. However, due to the two-dimensional character of membrane surfaces intermolecular interactions between the adsorbed molecules become important. Therefore previously adsorbed molecules can influence the adsorption behavior of additional protein molecules and their membrane-associated structure. Using the model peptide LAH4, which upon membrane-adsorption can adopt a transmembrane as well as an in-planar configuration, we carried out a systematic study of the correlation between the peptide concentration in the membrane and the topology of this membrane-associated polypeptide. We could describe the observed binding behavior by establishing a concept, which includes intermolecular interactions in terms of a scaled particle theory.High surface concentration of the peptide shifts the molecules from an in-planar into a transmembrane conformation, a process driven by the reduction of occupied surface area per molecule. In a cellular context, the crowding-dependent alignment might provide a molecular switch for a cell to sense and control its membrane occupancy. Furthermore, crowding might have pronounced effects on biological events, such as the cooperative behavior of antimicrobial peptides and the membrane triggered aggregation of amyloidogenic peptides.  相似文献   
23.
真细菌在复制起始区附近的基因排布顺序相当保守。根据DnaA和DnaN的氨基酸保守序列及链霉菌对密码子的偏用性 ,设计简并引物 ,以除虫链霉菌基因组DNA为模板扩增出一条约 1.4kb的片段。序列分析表明该片段含有部分的dnaA及dnaN基因 ,并在这两个基因之间有一段非编码区 ,其上有 19个典型的DnaA盒 ,推测是除虫链霉菌的复制起始区 (oriC)。与其他链霉菌已知的oriC作比较后发现除虫链霉菌的DnaA盒在位置、方向及间隔区的长度上都高度保守 ,并归纳出其保守序列为 (T/C) (T/C) (G/A/C)TCCACA(有下划线的碱基在该位置出现频率较高 )。将这段oriC插入到仅能在大肠杆菌中复制的质粒pQC15 6中 ,重组质粒可以成功转化变铅青链霉菌ZX7。对oriC分段研究发现其 3′部分对质粒的稳定性及转化效率有促进作用。  相似文献   
24.
目的:在耻垢分枝杆菌中表达重组结核杆菌DnaA蛋白并对表达产物进行鉴定。方法:用PCR的方法扩增结核杆菌dnaA基因并克隆至表达载体pMF406中,构建重组大肠杆菌-分枝杆菌穿梭质粒pMF-dnaA。经双酶切及测序鉴定后,用电转化的方法将重组质粒转至耻垢分枝杆菌mc2155中。用0.02%乙酰胺诱导重组耻垢分枝杆菌,对表达产物进行SDS-PAGE和Western blotting检测和鉴定。结果:重组耻垢分枝杆菌构建成功,SDS-PAGE及Western blotting结果显示该重组耻垢杆菌可以实现结核杆菌DnaA蛋白的同源高效表达。结论:结核杆菌DnaA蛋白的同源表达为结核杆菌DNA复制机制的研究奠定了基础。  相似文献   
25.
头状链轮丝菌(Streptoverticillum caespitosus)ATCC27422染色体复制起始区(oriC)内共有22个DnaA盒结构;其中第21、22个DnaA盒彼此方向相反、相互重叠8个碱基。放线菌oriC数据库搜索发现,这种重叠DnaA盒在抗生素链霉菌、结核分枝杆菌等几种放线菌中也同样存在。在分枝杆菌中一般由第1、2个DnaA盒组成,而在链霉菌中由最后的两个DnaA盒(第21、22)组成。重叠DnaA盒保守序列为CTGTGCACAA,长度为10个碱基,即由于重叠的缘故比正常DnaA盒长1个碱基。通过测量载体对变铅青链霉菌的转化效率研究了oriC不同部位在染色体复制起始中的功能和地位。头状链轮丝菌oriC序列的5′端1~188位的片段虽然不包含有DnaA盒结构,但该片段的缺失,造成oriC复制起始功能的完全丧失。3′端793~939位片段同样没有DnaA盒结构,该片段的缺失,仅发生转化效率的降低约40%,说明oriC的793~939位序列对DNA复制起始效率以及复制子稳定性起重要作用。当oniC被克隆人载体时两端各带有一段dnaA、dnaN基因的部分序列,所构建的载体虽然转化效率较低,但转化子的菌落、菌丝形态与宿主菌原有的表型相接近,由此推断oriC两端的序列除了编码各自产物外,可能通过影响染色体DNA复制的起始效率、复制子稳定性等对染色体的复制起始发挥顺式调控作用。  相似文献   
26.
The activation of DnaA protein by cardiolipin is inhibited by fluphenazinein vitro. We therefore examined the sensitivity of temperature-sensitivednaA mutants ofEscherichia coli to fluphenazine and other phenothiazine derivatives. Among the eightdnaA mutants tested,dnaA5, dnaA46 dnaA602, anddnaA604, mutants with mutations in the putative ATP binding site of DnaA protein, showed higher sensitivities to phenothiazine derivatives than did the wild-type strain. ThednaA508 anddnaA167 mutants, which have mutations in the N-terminal region of DnaA protein, also showed higher sensitivities to phenothiazine derivatives. On the other hand, thednaA204 anddnaA205 mutants, with lesions in the C-terminal region of the DnaA protein, showed the same sensitivity to phenothiazine derivatives as the wild-type strain. Complementation analysis with a plasmid containing the wild-typednaA gene and phage P1-mediated transduction confirmed thatdnaA mutations are responsible for these sensitivity phenotypes.  相似文献   
27.
 Replication of mini-F plasmids requires the initiator protein RepE, which binds specifically to four iterons within the origin (ori2), as well as some host factors that are involved in chromosomal DNA replication. To understand the role of host factors and RepE in the early steps of mini-F DNA replication, we examined the effects of RepE and the Escherichia coli proteins DnaA and HU on the localized melting of ori2 DNA in a purified in vitro system. We found that the binding of RepE to an iteron causes a 50° bend at or around the site of binding. RepE and HU exhibited synergistic effects on the localized melting within the ori2 region, as detected by sensitivity to the single-strand specific P1 endonuclease. This opening of duplex DNA occurred around the 13mer of ori2, whose sequence closely resembles the set of 13mers found in the chromosomal origin oriC. Further addition of DnaA to the reaction mixture increased the efficiency of melting and appeared to extend melting to the adjacent AT-rich region. Moreover, DNA melting with appreciably higher efficiencies was observed with mutant forms of RepE that were previously shown to be hyperactive both in DNA binding in vitro and in initiator activity in vivo. We propose that the binding of RepE to four iterons of ori2 causes bending at the sites of RepE binding and, with the assistance of HU, induces a localized melting in the 13mer region. The addition of DnaA extends melting to the AT-rich region, which could then serve as the entry site for the DnaB-DnaC complex, much as has been documented for oriC- dependent replication. Received: 15 May 1996/Accepted: 11 July 1996  相似文献   
28.
Summary The temperature-sensitive dnaA46 mutation in Escherichia coli can be phenotypically suppressed at 42° C by oversupply of GroELS proteins, and the suppressed cells grow extremely slowly at 30° C. We found that the phenotype of dnaA46 showing this cold sensitivity was dominant over the phenotype of dnaA +, and could not be rescued by introduction of oriC-independent replication systems. These results suggest that the cold sensitivity was not caused by a simple defect in replication. When a growing culture of a dnaA46 strain with a GroELS-overproducing plasmid was shifted from 42° to 30° C in the presence of chloramphenicol, the chromosomal DNA replicated excessively. Initiation of replication occurred at the site of oriC repeatedly four or five times during a 4 h incubation period without concomitant protein synthesis, indicating an excessive capacity for initiation. Such overreplication did not take place at 42° C in the suppressed dnaA46 strain, or at either temperature in GroELS-oversupplied dnaA + cells. No significant difference was detected between the cellular content of DnaA protein in suppressed cells where the initiation capacity was abnormally high, and that in wild-type cells in which the initiation capacity was normal. Thus, DnaA protein might function in vivo through some phase control mechanism for initiation, apart from a simple regulation by its total amount. A possible mechanism is proposed based on the participation of GroELS proteins in protein folding.A preliminary account of this work was presented at the Annual Meeting of the Molecular Biology Society of Japan in 1989.  相似文献   
29.
A genomically and chemically detailed mathematical model of a "minimal cell" would be useful to understand better the "design logic" of cellular regulation. A "minimal cell" will be a prokaryote with the minimum number of genes necessary for growth and replication in an ideal environment (i.e., preformed precursors, constant temperature, etc.). The Cornell single-cell model of Escherichia coli serves as the basic framework upon which a minimal cell model can be constructed. A critical issue for any cell model is to describe a mechanism for control of initiation of chromosome replication. There is strong evidence that the essence of chromosome replication control is highly conserved in eubacteria and even extends to the archae. A generalized mechanism is possible based on binding of the protein DnaA-ATP to the origin of replication (oriC) as a primary control. Other features, such as regulatory inactivation of DnaA (RIDA) by conversion of DnaA-ATP to DnaA-ADP and titration of DnaA by binding to other DnaA boxes on the chromosome, have emerged as critical elements in obtaining a functional system to control initiation of chromosome synthesis. We describe a biologically realistic model of chromosome replication initiation control embedded in a complete whole-cell model that explicitly links the external environment to the mechanism of replication control. The base model is deterministic and then modified to include stochastic variation in the components for replication control. The stochastic model allows evaluation of the model's robustness, employing a low standard deviation of interinitiation time as a measure of robustness. Four factors were examined: DnaA synthesis rate; DnaA-ATP binding sites at oriC; the binding rate of DnaA-ATP to the nonfunctional DnaA boxes; and the effect of changing the number of nonfunctional binding sites. The observed DnaA synthesis rate (2000 molecules/cell) and the number of DnaA binding sites per origin (30) are close to the values predicted by the model to provide good control (low variance of interinitiation time), with a reasonable expenditure of cell resources. At relatively high binding rates for DnaA-ATP to the DnaA boxes (10(16) M(-1) s(-1)), increasing the number of DnaA binding sites to about 300, improved control (but little further improvement was seen by extension to 1000 boxes); however, at a low binding rate (10(10) M(-1) s(-1)), an increase in DnaA boxes had an adverse effect on control. The combination of all four factors is probably necessary to obtain a robust control system. Although this mechanism of replication initiation control is highly conserved, it is not clear if simpler control in a minimal cell might exist based on experimental observations with Mycoplasma. This issue is discussed in this investigation.  相似文献   
30.
The genome of Vibrio cholerae consists of two circular chromosomes of different sizes. Here, a comparative analysis of the replication origins of the large chromosomes (oriCIVC) of classical and El Tor biotypes of the pathogen is reported. Extensive nucleotide sequence analyses revealed that the oriCIVC region has six DnaA boxes instead of the five found in Escherichia coli oriC. The additional DnaA box, designated RV, was unique in V. cholerae as well as in other members of the family Vibrionaceae. However, RV was not found to be essential for the autonomous replication function of the 307-bp oriCIVC minimal region. In contrast to El Tor and the recently evolved V. cholerae O139 strains, the oriCIVC region of the classical biotype showed only a single base transition (TG) in a highly conserved AT-rich 13-mer R repeat region. From the minichromosome copy number and its transformational efficiency analyses, it appears that the single base substitution in the oriCIVC of the classical biotype has a significant effect on its replication initiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号