首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   4篇
  2020年   1篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   6篇
  2013年   4篇
  2012年   3篇
  2011年   7篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   6篇
  2006年   8篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
21.
Prior studies have shown that kreisler mutants display early inner ear defects that are related to abnormal hindbrain development and signaling. These defects in kreisler mice have been linked to mutation of the kr/mafB gene. To investigate potential relevance of kr/mafB and abnormal hindbrain development in inner ear patterning, we analyzed the ear morphogenesis in kreisler mice using a paint-fill technique. We also examined the expression patterns of a battery of genes important for normal inner ear patterning and development. Our results indicate that the loss of dorsal otic structures such as the endolymphatic duct and sac is attributable to the downregulation of Gbx2, Dlx5 and Wnt2b in the dorsal region of the otocyst. In contrast, the expanded expression domain of Otx2 in the ventral otic region likely contributes to the cochlear phenotype seen in kreisler mutants. Sensory organ development is also markedly disrupted in kreisler mutants. This pattern of defects and gene expression changes is remarkably similar to that observed in Gbx2 mutants. Taken together, the data show an important role for hindbrain cues, and indirectly, kr/mafB, in guiding inner ear morphogenesis. The data also identify Gbx2, Dlx5, Wnt2b and Otx2 as key otic genes ultimately affected by perturbation of the kr/mafB-hindbrain pathway.  相似文献   
22.
The Msx and Dlx families of homeobox proteins are important regulators for embryogenesis. Loss of Msx1 in mice results in multiple developmental defects including craniofacial malformations. Although Dlx5 is widely expressed during embryonic development, targeted null mutation of Dlx5 mainly affects the development of craniofacial bones. Msx1 and Dlx5 show overlapping expression patterns during frontal bone development. To investigate the functional significance of Msx1/Dlx5 interaction in regulating frontal bone development, we generated Msx1 and Dlx5 double null mutant mice. In Msx1?/?;Dlx5?/? mice, the frontal bones defect was more severe than that of either Msx1?/? or Dlx5?/? mice. This aggravated frontal bone defect suggests that Msx1 and Dlx5 function synergistically to regulate osteogenesis. This synergistic effect of Msx1 and Dlx5 on the frontal bone represents a tissue specific mode of interaction of the Msx and Dlx genes. Furthermore, Dlx5 requires Msx1 for its expression in the context of frontal bone development. Our study shows that Msx1/Dlx5 interaction is crucial for osteogenic induction during frontal bone development. genesis 48:645–655, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
23.
In this study we examined the role of cell-cell affinity in patterning the avian frontonasal mass-the facial prominence that forms the prenasal cartilage and premaxillary bone. Reconstituted cell pellets derived from undifferentiated, frontonasal mass mesenchyme were recombined with facial epithelium and grafted to host embryos to continue development. We determined that the cells reestablished a recognizable frontonasal mass pattern and were able to induce egg teeth in overlying ectoderm. Further analysis revealed there were region-specific differences in the cartilage patterns such that central recombinations were more likely to form a straight cartilage rod, whereas lateral mesenchyme pellets were more likely to form complex, branched cartilage patterns. The basis for the pattern differences was that central mesenchyme cells showed preferential clustering in the cartilage condensations in the center of the graft, whereas lateral cells were spread throughout as determined by dye labeling and quail chicken chimeras. The disruption of cell contacts temporarily delayed onset of gene expression but by 48 h both Msx2 and Dlx5 were expressed. Msx2, in particular, had very clear edges to the expression domains and often the pattern of expression correlated with type of cartilage morphology. Together, these data suggest that an important patterning mechanism in the face is the ability of mesenchymal cells to sort out according to position and that Msx2 may help repress chondrogenic potential in the lateral frontonasal mass.  相似文献   
24.
25.
26.
27.
The apical ectodermal ridge (AER) is a specialized ectodermal region essential for limb outgrowth. Msx2 expression patterns in limb development strongly suggest an important role for Msx2 in the AER. Our previous studies identified a 348-bp fragment of the chicken Msx2 gene with AER enhancer activity. In this study, the functions of four potential homeodomain binding TAAT sites in this enhancer were studied using transgenic mice and in vitro protein-DNA interactions. Transgenic studies indicate that the four TAAT sites are not redundant and that only the B-TAAT site is critical for AER enhancer activity. The expression patterns of Msx2 and Dlx5 genes in the AER suggest that they might be involved in the regulation of Msx2. In support of this hypothesis, we found that Msx2 and Dlx5 can bind to the B-TAAT site as well as to a fragment containing the D- and E-TAAT sites in the Msx2 AER enhancer sequences. (c)2002 Elsevier Science (USA).  相似文献   
28.
29.
The Ci-Dll-B gene is an early regulator of ectodermal development in the ascidian Ciona intestinalis (Imai et al., 2006). Ci-Dll-B is located in a convergently transcribed bigene cluster with a tandem duplicate, Ci-Dll-A. This clustered genomic arrangement is the same as those of the homologous vertebrate Dlx genes, which are also arranged in convergently transcribed bigene clusters. Sequence analysis of the C. intestinalis Dll-A-B cluster reveals a 378 bp region upstream of Ci-Dll-B, termed B1, which is highly conserved with the corresponding region from the congener Ciona savignyi. The B1 element is necessary and sufficient to drive expression of a lacZ reporter gene in a pattern mimicking the endogenous expression of Ci-Dll-B at gastrula stages. This expression pattern which is specific to the entire animal hemisphere is activated preferentially in posterior, or b-lineage, cells by a central portion of B1. Expression in anterior, or a-lineage cells, can be activated by this central portion in combination with the distal part of B1. Anterior expression can also be activated by the central part of B1 plus both the proximal part of B1 and non-conserved sequence upstream of B1. Thus, cis-regulation of early Ci-Dll-B expression is activated by a required submodule in the center of B1, driving posterior expression, which works in combination with redundant submodules that respond to differentially localized anterior factors to produce the total animal hemisphere expression pattern. Interestingly, the intergenic region of the cluster, which is important for expression of the Dlx genes in vertebrates, does not have a specific activating function in the reporter genes tested, but acts as an attenuator in combination with upstream sequences.  相似文献   
30.
Background: Retinoic acid (RA) is essential for inner ear development. However, exposure to excess RA at a critical period leads to inner ear defects. These defects are associated with disruption in epithelial–mesenchymal interactions. METHODS: This study investigates the role of Dlx5 in the epithelial–mesenchymal interactions that guide otic capsule chondrogenesis, as well as the effect of excess in utero RA exposure on Dlx5 expression in the developing mouse inner ear. Control of Dlx5 by Fgf3 and Fgf10 under excess RA conditions is investigated by examining the developmental window during which Fgf3 and Fgf10 are altered by in utero RA exposure and by testing the ability of Fgf3 and Fgf10 to mitigate the reduction in chondrogenesis and Dlx5 expression mediated by RA in high‐density cultures of periotic mesenchyme containing otic epithelium, a model of epithelial–mesenchymal interactions in which chondrogenic differentiation of periotic mesenchyme ensues in response to induction by otic epithelium. RESULTS: Dlx5 deletion alters expression of TGFβ1, important for otic capsule chondrogenesis, in the developing inner ear and compromises the ability of cultured periotic mesenchyme containing otic epithelium, harvested from Dlx5 null embryos, to differentiate into cartilage when compared with control cultures. Downregulation in Dlx5 ensues as a consequence of in utero RA exposure in association with inner ear dysmorphogenesis. This change in Dlx5 is noted at embryonic day 10.5 (E10.5), but not at E9.5, suggesting that Dlx5 is not a direct RA target. Before Dlx5 downregulation, Fgf3 and Fgf10 expression is modified in the inner ear by excess RA, with the ability of exogenous Fgf3 and Fgf10 to rescue chondrogenesis and Dlx5 expression in RA‐treated cultures of periotic mesenchyme containing otic epithelium supporting these fibroblast growth factors (FGFs) as intermediary genes by which RA mediates its effects. CONCLUSIONS : Disruption in an Fgf3, ‐10/Dlx5 signaling cascade is operant in molecular mechanisms of inner ear teratogenesis by excess RA. Birth Defects Res (Part B) 2008. ©2008 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号