首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   14篇
  国内免费   11篇
  2024年   2篇
  2023年   4篇
  2022年   9篇
  2021年   3篇
  2020年   9篇
  2019年   17篇
  2018年   14篇
  2017年   11篇
  2016年   7篇
  2015年   5篇
  2014年   12篇
  2013年   20篇
  2012年   9篇
  2011年   18篇
  2010年   12篇
  2009年   21篇
  2008年   18篇
  2007年   26篇
  2006年   13篇
  2005年   12篇
  2004年   13篇
  2003年   8篇
  2002年   7篇
  2001年   11篇
  2000年   3篇
  1999年   7篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1990年   1篇
  1989年   1篇
  1982年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有320条查询结果,搜索用时 15 毫秒
101.
Stress-induced generation of reactive oxygen species (ROS) leads to lowering of the biochemical yield of photosynthesis in plant leaves. The detrimental effects of oxidative stress by paraquat are initiated by the generation of superoxide anion radicals in the vicinity of the thylakoid membrane. However, direct proof of ROS production has been elusive. In this study, we report first in vivo detection and imaging of the generated superoxide in illuminated tobacco leaves following paraquat infiltration. This was done using a newly developed imaging apparatus capable of detecting changes in the fluorescence of the ROS sensor 3-(N-dansyl)aminomethyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole. Under identical conditions, the effects on photosynthesis caused by the oxidative stress were assessed via chlorophyll fluorescence imaging and the saturation pulse method. In the future, the combination of these two imaging techniques may provide information on the spatial distribution and extent of stress induced ROS production in plant leaves, as well as on the protective ability of various free radical scavengers and antioxidants.  相似文献   
102.
Transformation with the bacterial gene codA for choline oxidase allows Synechococcus sp. PCC 7942 cells to accumulate glycinebetaine when choline is supplemented exogenously. First, we observed two types of protective effect of glycinebetaine against heat-induced inactivation of photosystem II (PSII) in darkness; the codA transgene shifted the temperature range of inactivation of the oxygen-evolving complex from 40-52 °C (with half inactivation at 46 °C) to 46-60 °C (with half inactivation at 54 °C) and that of the photochemical reaction center from 44-55 °C (with half inactivation at 51 °C) to 52-63 °C (with half inactivation at 58 °C). However, in light, PSII was more sensitive to heat stress; when moderate heat stress, such as 40 °C, was combined with light stress, PSII was rapidly inactivated, although these stresses, when applied separately, did not inactivate either the oxygen-evolving complex or the photochemical reaction center. Further our studies demonstrated that the moderate heat stress inhibited the repair of PSII during photoinhibition at the site of synthesis de novo of the D1 protein but did not accelerate the photodamage directly. The codA transgene and, thus, the accumulation of glycinebetaine alleviated such an inhibitory effect of moderate heat stress on the repair of PSII by accelerating the synthesis of the D1 protein. We propose a hypothetical scheme for the cyanobacterial photosynthesis that moderate heat stress inhibits the translation machinery and glycinebetaine protects it against the heat-induced inactivation.  相似文献   
103.
Peroxisomes have the intrinsic ability to produce and scavenge hydrogen peroxide (H2O2), a diffusible second messenger that controls diverse cellular processes by modulating protein activity through cysteine oxidation. Current evidence indicates that H2O2, a molecule whose physicochemical properties are similar to those of water, traverses cellular membranes through specific aquaporin channels, called peroxiporins. Until now, no peroxiporin-like proteins have been identified in the peroxisomal membrane, and it is widely assumed that small molecules such as H2O2 can freely permeate this membrane through PXMP2, a non-selective pore-forming protein with an upper molecular size limit of 300–600 Da. By employing the CRISPR-Cas9 technology in combination with a Flp-In T-REx 293 cell line that can be used to selectively generate H2O2 inside peroxisomes in a controlled manner, we provide evidence that PXMP2 is not essential for H2O2 permeation across the peroxisomal membrane, neither in control cells nor in cells lacking PEX11B, a peroxisomal membrane-shaping protein whose yeast homologue facilitates the permeation of molecules up to 400 Da. During the course of this study, we unexpectedly noted that inactivation of PEX11B leads to partial localization of both peroxisomal membrane and matrix proteins to mitochondria and a decrease in peroxisome density. These findings are discussed in terms of the formation of a functional peroxisomal matrix protein import machinery in the outer mitochondrial membrane.  相似文献   
104.

Background

Glucocorticoids are commonly used as adjuvant treatment for side-effects and have anti-proliferative activity in several tumors but, on the other hand, their proliferative effect has been reported in several studies, some of them involving the spread of cancer. We shall attempt to reconcile these incongruities from the genomic and tissue-physiology perspectives with our findings.

Methods

An accurate phenotype analysis of microarray data can help to solve multiple paradoxes derived from tumor-progression models. We have developed a new strategy to facilitate the study of interdependences among the phenotypes defined by the sample clusters obtained by common clustering methods (HC, SOTA, SOM, PAM). These interdependences are obtained by the detection of non-linear expression-relationships where each fluctuation in the relationship implies a phenotype change and each relationship typology implies a specific phenotype interdependence. As a result, multiple phenotypic changes are identified together with the genes involved in the phenotype transitions. In this way, we study the phenotypic changes from microarray data that describe common phenotypes in cancer from different tissues, and we cross our results with biomedical databases to relate the glucocorticoid activity to the phenotypic changes.

Results

11,244 significant non-linear expression relationships, classified into 11 different typologies, have been detected from the data matrix analyzed. From them, 415 non-linear expression relationships were related to glucocorticoid activity. Studying them, we have found the possible reason for opposite effects of some stressor agents like dexamethasone on tumor progression and it has been confirmed by literature. This hidden reason has resulted in being linked with the type of tumor progression of the tissues. In the first type of tumor progression found, new cells can be stressed during proliferation and stressor agents increase tumor proliferation. In the second type, cell stress and tumor proliferation are antagonists so, therefore, stressor agents stop tumor proliferation in order to stress the cells. The non-linear expression relationships among DUSP6, FERMT2, FKBP5, EGFR, NEDD4L and CITED2 genes are used to synthesize these findings.  相似文献   
105.
106.
In aquatic vertebrates that acquire oxygen aerially dive duration scales positively with body mass, i.e. larger animals can dive for longer periods, however in bimodally respiring animals the relationship between dive duration and body mass is unclear. In this study we investigated the relationships between body size, aquatic respiration, and dive duration in the bimodally respiring turtle, Elseya albagula. Under normoxic conditions, dive duration was found to be independent of body mass. The dive durations of smaller turtles were equivalent to that of larger individuals despite their relatively smaller oxygen stores and higher mass specific metabolic rates. Smaller turtles were able to increase their dive duration through the use of aquatic respiration. Smaller turtles had a relatively higher cloacal bursae surface area than larger turtles, which allowed them to extract a relatively larger amount of oxygen from the water. By removing the ability to respire aquatically (hypoxic conditions), the dive duration of the smaller turtles significantly decreased restoring the normal positive relationship between body size and dive duration that is seen in other air-breathing vertebrates.  相似文献   
107.
The chronological change of photosynthetic efficiency in a frozen storage treatment of the Japanese Nori cultivation industry was examined in the cultivated red alga, Pyropia yezoensis f. narawaensis (Saga‐#5 Strain, Bangiales) by using pulse‐amplitude fluorometry. During the desiccation process that was conducted after the nursery cultivation season in November, the maximum quantum yield (F v/F m) of the gametophytic sporelings growing on the Nori‐net decreased monotonically with decreasing absolute water content (AWC), and was around 0.1 at 20% AWC. During frozen storage of the Nori‐net, the F v/F m of the frozen gametophyte was low but stable, and ranged between 0.10 ± 0.02 SD and 0.14 ± 0.05 SD. The magnitude of F v/F m for the gametophyte of the freezing treatment, after 10 min and 3 h of immersion in seawater, recovered quickly. After 10 min and 3 h of immersion, these values were 0.29 ± 0.12 SD and 0.47 ± 0.05 SD during the 14 days of freezing treatment, and 0.15 ± 0.02 SD and 0.29 ± 0.04 SD after 71 days of freezing treatment, and suggest that the ability to recover gradually decreased as the storage duration increased. The response of F v/F m from general cultivation (i.e., directly cultivated from the nursery cultivation season) and those after 47 days of freezing were almost identical, suggesting that the current Nori net frozen storage period (6 or 7 weeks) was not detrimental to the gametophyte.  相似文献   
108.
Two female loggerhead turtles (Caretta caretta) were tracked, following nesting at Alagadi Beach (35°33′N, 33°47′E), Northern Cyprus, eastern Mediterranean for 60 and 82 days, respectively. The two individuals showed marked differences in their behaviour. Individual A was tracked to Syrian coastal waters, whereas individual B travelled around the coast of Northern Cyprus to a foraging site in the waters off the east coast of Northern Cyprus. Submergence durations varied markedly during different phases of the migration, suggesting coastal foraging/resting at certain stages en route with sustained directed travelling movements during initial coastal movements and open ocean crossing. Both turtles showed fidelity to foraging grounds for the duration of transmissions (Turtle A: 36 days; Turtle B: 58 days). In both cases, locations were centred in inshore waters although the two individuals exhibited quite different submergence patterns. Individual A carried out very short dives of typical duration <10 min, whereas Individual B carried out longer dives with typical duration >20 min. Diel differences in submergence duration at the foraging grounds suggested longer dives at night/early morning for both turtles. For Turtle A, there was a general reduction in submergence duration as the period of residence increased; a pattern that may have been related to increasing temperature experienced. The total distance travelled by the two turtles (320 and 227 km) was relatively short when compared to satellite tracking studies of conspecifics following nesting in South Africa and USA and tagging studies of nesting loggerhead turtles in Greece and Australia. It is hypothesized that short migratory distance may be correlated with both the small body size and the relatively high frequency of remigration in this population.  相似文献   
109.
Recent findings indicate that microRNAs (miRNAs) are involved in the regulatory network of adipogenesis and obesity. Thus far, only a few human miRNAs are known to function as adipogenic regulators, fanning interest in studies on the functional role of miRNAs during adipogenesis in humans. In a previous study, we used a microarray to assess miRNA expression during human preadipocyte differentiation. We found that expression of the miR-26b was increased in mature adipocytes. MiR-26b is an intronic miRNA located in the intron of CTDSP1 (carboxy terminal domain, RNA polymerase II, polypeptide A, small phosphatase 1). Target prediction and Renilla luciferase analyses revealed the phosphatase and tensin homolog gene (PTEN) as a putative target gene. In this study, we found that miR-26b was gradually upregulated during adipocyte differentiation. To understand the roles of miR-26b in adipogenesis, we adopted a loss-of-function approach to silence miR-26b stably in human preadipocytes. We found that miR-26b inhibition effectively suppressed adipocyte differentiation, as evidenced by decreased lipid droplets and the ability of miR-26b to decrease mRNA levels of adipocyte-specific molecular markers and triglyceride accumulation. Furthermore, the cell growth assay revealed that miR-26b inhibition promoted proliferation. Nevertheless, it had no effect on apoptosis. Taken together, these data indicate that miR-26b may be involved in adipogenesis and could be targeted for therapeutic intervention in obesity.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号