首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1088篇
  免费   93篇
  国内免费   21篇
  2023年   9篇
  2022年   31篇
  2021年   29篇
  2020年   36篇
  2019年   32篇
  2018年   39篇
  2017年   25篇
  2016年   15篇
  2015年   28篇
  2014年   52篇
  2013年   72篇
  2012年   41篇
  2011年   25篇
  2010年   28篇
  2009年   55篇
  2008年   52篇
  2007年   69篇
  2006年   67篇
  2005年   61篇
  2004年   59篇
  2003年   47篇
  2002年   51篇
  2001年   31篇
  2000年   18篇
  1999年   29篇
  1998年   32篇
  1997年   23篇
  1996年   9篇
  1995年   23篇
  1994年   13篇
  1993年   16篇
  1992年   13篇
  1991年   9篇
  1990年   10篇
  1989年   12篇
  1988年   10篇
  1987年   7篇
  1986年   4篇
  1985年   9篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
排序方式: 共有1202条查询结果,搜索用时 15 毫秒
951.
Junjian Wang 《FEBS letters》2009,583(4):643-7733
Kaempferol is a dietary flavonoid that is thought to function as a selective estrogen receptor modulator. In this study, we established that kaempferol also functions as an inverse agonist for estrogen-related receptors alpha and gamma (ERRα and ERRγ). We demonstrated that kaempferol binds to ERRα and ERRγ and blocks their interaction with coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). Kaempferol also suppressed the expressions of ERR-target genes pyruvate dehydrogenase kinase 2 and 4 (PDK2 and PDK4). This evidence suggests that kaempferol may exert some of its biological effect through both estrogen receptors and estrogen-related receptors.

Structured summary:

MINT-6824653:PGC-1 alpha (uniprotkb:Q9UBK2) and ERR gamma (uniprotkb: P62508) bind (MI:0407) by surface plasmon resonance (MI:0107)  相似文献   
952.
The study of membrane proteins requires a proper consideration of the specific environment provided by the biomembrane. The compositional complexity of this environment poses great challenges to all experimental and theoretical approaches. In this article a rather simple theoretical concept is discussed for its ability to mimic the biomembrane. The biomembrane is approximated by three mimicry solvents forming individual continuum layers of characteristic physical properties. Several specific structural problems are studied with a focus on the biological significance of such an approach. Our results support the general perception that the biomembrane is crucial for correct positioning and embedding of its constituents. The described model provides a semi-quantitative tool of potential interest to many problems in structural membrane biology.  相似文献   
953.
Single-molecule tracking and fluorescence correlation spectroscopy (FCS) applied to the plasma membrane in living cells have allowed a number of unprecedented observations, thus fostering a new basic understanding of molecular diffusion, interaction, and signal transduction in the plasma membrane. It is becoming clear that the plasma membrane is a heterogeneous entity, containing diverse structures on nano-meso-scales (2-200 nm) with a variety of lifetimes, where certain membrane molecules stay together for limited durations. Molecular interactions occur in the time-dependent inhomogeneous two-dimensional liquid of the plasma membrane, which might be a key for plasma membrane functions.  相似文献   
954.
Protein kinases phosphorylating Ser/Thr/Tyr residues in several cellular proteins exert tight control over their biological functions. They constitute the largest protein family in most eukaryotic species. Protein kinases classified based on sequence similarity in their catalytic domains, cluster into subfamilies, which share gross functional properties. Many protein kinases are associated or tethered covalently to domains that serve as adapter or regulatory modules, aiding substrate recruitment, specificity, and also serve as scaffolds. Hence the modular organisation of the protein kinases serves as guidelines to their functional and molecular properties. Analysis of genomic repertoires of protein kinases in eukaryotes have revealed wide spectrum of domain organisation across various subfamilies of kinases. Occurrence of organism-specific novel domain combinations suggests functional diversity achieved by protein kinases in order to regulate variety of biological processes. In addition, domain architecture of protein kinases revealed existence of hybrid protein kinase subfamilies and their emerging roles in the signaling of eukaryotic organisms. In this review we discuss the repertoire of non-kinase domains tethered to multi-domain kinases in the metazoans. Similarities and differences in the domain architectures of protein kinases in these organisms indicate conserved and unique features that are critical to functional specialization.  相似文献   
955.
Integrin-linked kinase (ILK) represents a key component of integrin signaling complexes that functions in concert with multiple binding partners to transmit cues from the extracellular matrix environment to the actin cytoskeleton. Both gain- and loss-of-function approaches to study ILK have confirmed the essential role of this protein in regulating cell-matrix adhesion dynamics and cytoskeletal organization.  相似文献   
956.
Summary 1. Ras signaling and oncogenesis depend on the dynamic interplay of Ras with distinctive plasma membrane (PM) microdomains and various intracellular compartments. Such interaction is dictated by individual elements in the carboxy-terminal domain of the Ras proteins, including a farnesyl isoprenoid group, sequences in the hypervariable region (hvr)-linker, and palmitoyl groups in H/N-Ras isoforms.2. The farnesyl group acts as a specific recognition unit that interacts with prenyl-binding pockets in galectin-1 (Gal-1), galectin-3 (Gal-3), and cGMP phosphodiesterase δ. This interaction appears to contribute to the prolongation of Ras signals in the PM, the determination of Ras effector usage, and perhaps also the transport of cytoplasmic Ras. Gal-1 promotes H-Ras signaling to Raf at the expense of phosphoinositide 3-kinase (PI3-K) and Ral guanine nucleotide exchange factor (RalGEF), while galectin-3 promotes K-Ras signaling to both Raf and PI3-K.3. The hvr-linker and the palmitates of H-Ras and N-Ras determine the micro- and macro-localizations of these proteins in the PM and in the Golgi, as well as in ‘rasosomes’, randomly moving nanoparticles that carry palmitoylated Ras proteins and their signal through the cytoplasm.4. The dynamic compartmentalization of Ras proteins contributes to the spatial organization of Ras signaling, promotes redistribution of Ras, and provides an additional level of selectivity to the signal output of this regulatory GTPase.  相似文献   
957.
The ubiquitin-proteasome pathway is essential throughout the life cycle of a cell. This system employs an astounding number of proteins to ubiquitylate and to deliver protein substrates to the proteasome for their degradation. At the heart of this process is the large and growing family of ubiquitin receptor proteins. Within this family is an intensely studied group that contains both ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains: Rad23, Ddi1 and Dsk2. Although UBL/UBA family members are reported to regulate the degradation of other proteins, their individual roles in ubiquitin-mediated protein degradation has proven difficult to resolve due to their overlapping functional roles and interaction with each other and other ubiquitin family members. Here, we use a combination of NMR spectroscopy and molecular biology to reveal that Rad23 and Ddi1 interact with each other by using UBL/UBA domain interactions in a manner that does not preclude their interaction with ubiquitin. We demonstrate that UBL/UBA proteins can bind a common tetraubiquitin molecule and thereby provide strong evidence for a model in which chains adopt an opened structure to bind multiple receptor proteins. Altogether our results suggest a mechanism through which UBL/UBA proteins could protect chains from premature de-ubiquitylation and unnecessary elongation during their transit to the proteasome.  相似文献   
958.
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative prion disease affecting cattle that is transmissible to humans, manifesting as a variant of Creutzfeldt-Jakob disease (vCJD) likely following the consumption of meat contaminated with BSE prions. High-affinity antibodies are a prerequisite for the development of simple, highly sensitive and non-invasive diagnostic tests that are able to detect even small amounts of the disease-associated PrP conformer (PrP(Sc)). We describe here the affinity maturation of a single-chain Fv antibody fragment with a binding affinity of 1 pM to a peptide derived from the unstructured region of bovine PrP (BoPrP (90-105)). This is the tightest peptide-binding antibody reported to date and may find useful application in diagnostics, especially when PrP(Sc) is pretreated by denaturation and/or proteolysis for peptide-like presentation. Several rounds of directed evolution and off-rate selection with ribosome display were performed using an antibody library generated from a single PrP binder with error-prone PCR and DNA-shuffling. As the correct determinations of affinities in this range are not straightforward, competition biosensor techniques and KinExA methods were both applied and compared. Structural interpretation of the affinity improvement was performed based on the crystal structure of the original prion binder in complex with the BoPrP (95-104) peptide by modeling the corresponding mutations.  相似文献   
959.
This analysis takes an in-depth look into the difficulties encountered by automatic methods for domain decomposition from three-dimensional structure. The analysis involves a multi-faceted set of criteria including the integrity of secondary structure elements, the tendency toward fragmentation of domains, domain boundary consistency and topology. The strength of the analysis comes from the use of a new comprehensive benchmark dataset, which is based on consensus among experts (CATH, SCOP and AUTHORS of the 3D structures) and covers 30 distinct architectures and 211 distinct topologies as defined by CATH. Furthermore, over 66% of the structures are multi-domain proteins; each domain combination occurring once per dataset. The performance of four automatic domain assignment methods, DomainParser, NCBI, PDP and PUU, is carefully analyzed using this broad spectrum of topology combinations and knowledge of rules and assumptions built into each algorithm. We conclude that it is practically impossible for an automatic method to achieve the level of performance of human experts. However, we propose specific improvements to automatic methods as well as broadening the concept of a structural domain. Such work is prerequisite for establishing improved approaches to domain recognition. (The benchmark dataset is available from http://pdomains.sdsc.edu).  相似文献   
960.
Here, we present an automatic assignment of potential cognate ligands to domains of enzymes in the CATH and SCOP protein domain classifications on the basis of structural data available in the wwPDB. This procedure involves two steps; firstly, we assign the binding of particular ligands to particular domains; secondly, we compare the chemical similarity of the PDB ligands to ligands in KEGG in order to assign cognate ligands. We find that use of the Enzyme Commission (EC) numbers is necessary to enable efficient and accurate cognate ligand assignment. The PROCOGNATE database currently has cognate ligand mapping for 3277 (4118) protein structures and 351 (302) superfamilies, as described by the CATH and (SCOP) databases, respectively. We find that just under half of all ligands are only and always bound by a single domain, with 16% bound by more than one domain and the remainder of the ligands showing a variety of binding modes. This finding has implications for domain recombination and the evolution of new protein functions. Domain architecture or context is also found to affect substrate specificity of particular domains, and we discuss example cases. The most popular PDB ligands are all found to be generic components of crystallisation buffers, highlighting the non-cognate ligand problem inherent in the PDB. In contrast, the most popular cognate ligands are all found to be universal cellular currencies of reducing power and energy such as NADH, FADH2 and ATP, respectively, reflecting the fact that the vast majority of enzymatic reactions utilise one of these popular co-factors. These ligands all share a common adenine ribonucleotide moiety, suggesting that many different domain superfamilies have converged to bind this chemical framework.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号