首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1088篇
  免费   93篇
  国内免费   21篇
  2023年   9篇
  2022年   31篇
  2021年   29篇
  2020年   36篇
  2019年   32篇
  2018年   39篇
  2017年   25篇
  2016年   15篇
  2015年   28篇
  2014年   52篇
  2013年   72篇
  2012年   41篇
  2011年   25篇
  2010年   28篇
  2009年   55篇
  2008年   52篇
  2007年   69篇
  2006年   67篇
  2005年   61篇
  2004年   59篇
  2003年   47篇
  2002年   51篇
  2001年   31篇
  2000年   18篇
  1999年   29篇
  1998年   32篇
  1997年   23篇
  1996年   9篇
  1995年   23篇
  1994年   13篇
  1993年   16篇
  1992年   13篇
  1991年   9篇
  1990年   10篇
  1989年   12篇
  1988年   10篇
  1987年   7篇
  1986年   4篇
  1985年   9篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
排序方式: 共有1202条查询结果,搜索用时 15 毫秒
71.
Ferredoxins, iron-sulfur (Fe-S) cluster proteins, play a key role in oxidoreduction reactions. To date, evolutionary analysis of these proteins across the domains of life have been confined to observing the abundance of Fe-S cluster types (2Fe-2S, 3Fe-4S, 4Fe-4S, 7Fe-8S (3Fe-4s and 4Fe-4S) and 2[4Fe-4S]) and the diversity of ferredoxins within these cluster types was not studied. To address this research gap, here we propose a subtype classification and nomenclature for ferredoxins based on the characteristic spacing between the cysteine amino acids of the Fe-S binding motif as a subtype signature to assess the diversity of ferredoxins across the living organisms. To test this hypothesis, comparative analysis of ferredoxins between bacterial groups, Alphaproteobacteria and Firmicutes and ferredoxins collected from species of different domains of life that are reported in the literature has been carried out. Ferredoxins were found to be highly diverse within their types. Large numbers of alphaproteobacterial species ferredoxin subtypes were found in Firmicutes species and the same ferredoxin subtypes across the species of Bacteria, Archaea, and Eukarya, suggesting shared common ancestral origin of ferredoxins between Archaea and Bacteria and lateral gene transfer of ferredoxins from prokaryotes (Archaea/Bacteria) to eukaryotes. This study opened new vistas for further analysis of diversity of ferredoxins in living organisms.  相似文献   
72.
The partly folded states of alpha-lactalbumin (alpha-LA) exposed to acid solution at pH 2.0 (A-state) or at neutral pH upon EDTA-mediated removal of the single protein-bound calcium ion (apo form) have been probed by limited proteolysis experiments. These states are nowadays commonly considered to be molten globules and thus protein-folding intermediates. Pepsin was used for proteolysis at acid pH, while proteinase K and chymotrypsin at neutral pH. The expectations were that these proteolytic probes would detect sites and/or chain regions in the partly folded states of alpha-LA sufficiently dynamic, or even unfolded, capable of binding and adaptation to the specific stereochemistry of the protease's active site. A time-course analysis of the proteolytic events revealed that the fast, initial proteolytic cuts of the 123-residue chain of alpha-LA in its A-state or apo form by the three proteases occur at the same chain region 39-54, the actual site(s) of cleavage depending upon the protease employed. This region in native alpha-LA encompasses the beta-sheets of the protein. Subsequent cleavages occur mostly at chain regions 31-35 and 95-105. Four fragment species of alpha-LA have been isolated by reverse-phase high-performance liquid chromatography, and their conformational properties examined by circular dichroism and fluorescence emission spectroscopy. The single chain fragment 53-103, containing all the binding sites for calcium in native alpha-LA and cross-linked by two disulfide bridges, maintains in aqueous buffer and in the presence of calcium ions a folded structure characterized by the same content of alpha-helix of the corresponding chain segment in native alpha-LA. Evidence for some structure was also obtained for the two-chain species 1-40 and 104-123, as well as 1-31 and 105-123, both systems being covalently linked by two disulfide bonds. In contrast, the protein species given by fragment 1-34 connected to fragment 54-123 or 57-123 via four disulfide bridges adopts in solution a folded structure with the helical content expected for a native-like conformation. Of interest, the proteolytic fragment species herewith isolated correspond to the structural domains and subdomains of alpha-LA that can be identified by computational analysis of the three-dimensional structure of native alpha-LA (Siddiqui AS, Barton GI, 1995, Protein Sci 4:872-884). The fast, initial cleavages at the level of the beta-sheet region of native alpha-LA indicate that this region is highly mobile or even unfolded in the alpha-LA molten globule(s), while the rest of the protein chain maintains sufficient structure and rigidity to prevent extensive proteolysis. The subsequent cleavages at chain segment 95-105 indicate that also this region is somewhat mobile in the A-state or apo form of the protein. It is concluded that the overall domain topology of native alpha-LA is maintained in acid or at neutral pH upon calcium depletion. Moreover, the molecular properties of the partly folded states of alpha-LA deduced here from proteolysis experiments do correlate with those derived from previous NMR and other physicochemical measurements.  相似文献   
73.
Liu J  Hegyi H  Acton TB  Montelione GT  Rost B 《Proteins》2004,56(2):188-200
A central goal of structural genomics is to experimentally determine representative structures for all protein families. At least 14 structural genomics pilot projects are currently investigating the feasibility of high-throughput structure determination; the National Institutes of Health funded nine of these in the United States. Initiatives differ in the particular subset of "all families" on which they focus. At the NorthEast Structural Genomics consortium (NESG), we target eukaryotic protein domain families. The automatic target selection procedure has three aims: 1) identify all protein domain families from currently five entirely sequenced eukaryotic target organisms based on their sequence homology, 2) discard those families that can be modeled on the basis of structural information already present in the PDB, and 3) target representatives of the remaining families for structure determination. To guarantee that all members of one family share a common foldlike region, we had to begin by dissecting proteins into structural domain-like regions before clustering. Our hierarchical approach, CHOP, utilizing homology to PrISM, Pfam-A, and SWISS-PROT chopped the 103,796 eukaryotic proteins/ORFs into 247,222 fragments. Of these fragments, 122,999 appeared suitable targets that were grouped into >27,000 singletons and >18,000 multifragment clusters. Thus, our results suggested that it might be necessary to determine >40,000 structures to minimally cover the subset of five eukaryotic proteomes.  相似文献   
74.
Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family   总被引:2,自引:0,他引:2  
Cullin-based E3 ligases target substrates for ubiquitin-dependent degradation by the 26S proteasome. The SCF (Skp1-Cul1-F-box) and ECS (ElonginC-Cul2-SOCS box) complexes are so far the best-characterized cullin-based ligases. Their atomic structure has been solved recently, and several substrates have been described in different organisms. In addition to Cul1 and Cul2, higher eucaryotic genomes encode for three other cullins: Cul3, Cul4, and Cul5. Recent results have shed light on the molecular composition and function of Cul3-based E3 ligases. In these complexes, BTB-domain-containing proteins may bridge the cullin to the substrate in a single polypeptide, while Skp1/F-box or ElonginC/SOCS heterodimers fulfill this function in the SCF and ECS complexes. BTB-containing proteins are evolutionary conserved and involved in diverse biological processes, but their function has not previously been linked to ubiquitin-dependent degradation. In this review, we present these new findings and compare the composition of Cul3-based ligases to the well-defined SCF and ECS ligases.  相似文献   
75.
The melanoma inhibitory activity (MIA) protein is a clinically valuable marker in patients with malignant melanoma as enhanced values diagnose metastatic melanoma stages III and IV. Here, we report the backbone dynamics of human MIA studied by (15)N NMR relaxation experiments. The folded core of human MIA is found to be rigid, but several loops connecting beta-sheets, such as the RT-loop for example, display increased mobility on picosecond to nanosecond time scales. One of the most important dynamic features is the pronounced flexibility of the distal loop, comprising residues Asp 68 to Ala 75, where motions on time scales up to milliseconds occur. Further, significant exchange contributions are observed for residues of the canonical binding site of SH3 domains including the RT-loop, the n-Src loop, for the loop comprising residues 13 to 19, which we refer to as the"disulfide loop", in part for the distal loop, and the carboxyl terminus of human MIA. The functional importance of this dynamic behavior is discussed with respect to the biological activity of several point mutations of human MIA. The results of this study suggest that the MIA protein and the recently identified highly homologous fibrocyte-derived protein (FDP)/MIA-like (MIAL) constitute a new family of secreted proteins that adopt an SH3 domain-like fold in solution with expanded ligand interactions.  相似文献   
76.
The flavoenzyme DAAO from Rhodotorula gracilis, a structural paradigm of the glutathione-reductase family of flavoproteins, is a stable homodimer with a flavin adenine dinucleotide (FAD) molecule tightly bound to each 40-kD subunit. In this work, the thermal unfolding of dimeric DAAO was compared with that of two monomeric forms of the same protein: a Deltaloop mutant, in which 14 residues belonging to a loop connecting strands betaF5-betaF6 have been deleted, and a monomer obtained by treating the native holoenzyme with 0.5 M NH(4)SCN. Thiocyanate specifically and reversibly affects monomer association in wild-type DAAO by acting on hydrophobic residues and on ionic pairs between the betaF5-betaF6 loop of one monomer and the alphaI3' and alphaI3" helices of the symmetry-related monomer. By using circular dichroism spectroscopy, protein and flavin fluorescence, activity assays, and DSC, we demonstrated that thermal unfolding involves (in order of increasing temperatures) loss of tertiary structure, followed by loss of some elements of secondary structure, and by general unfolding of the protein structure that was concomitant to FAD release. Temperature stability of wild-type DAAO is related to the presence of a dimeric structure that affects the stability of independent structural domains. The monomeric Deltaloop mutant is thermodynamically less stable than dimeric wild-type DAAO (with melting temperatures (T(m)s) of 48 degrees C and 54 degrees C, respectively). The absence of complications ensuing from association equilibria in the mutant Deltaloop DAAO allowed identification of two energetic domains: a low-temperature energetic domain related to unfolding of tertiary structure, and a high-temperature energetic domain related to loss of secondary structure elements and to flavin release.  相似文献   
77.
Standard methods of characterization of electron paramagnetic resonance (EPR) spectra of spin-labeled biomembranes limit the resolution of lateral heterogeneity to only two or three domain types. This disables examination of the structure—function relationship in complex membranes, which might be composed of a larger number of different domain types. To enable exploration of this kind, a new approach based on analysis of EPR spectra with multi-run, hybrid evolutionary optimization is proposed here. From the multiple runs a quasi-continuous distribution of membrane spectral parameters (order parameter, proportion of spectral component, polarity correction factor, rotational correlation time and broadening constant) can be constructed and presented by a new presentation technique CODE (colored distribution of EPR spectral parameters). Through this the concept of a soft picture of membrane heterogeneity is introduced, in contrast to the standard discrete domain picture. The soft characterization method, established on synthetic spectra, was used to examine the lateral heterogeneity of liposome membranes as well as of membranes of neutrophils from healthy and asthmatic horses. In liposome membranes the determined number of domain types was the same as already established by standard procedures of EPR spectra line-shape interpretation. In membranes of neutrophils a quasi-continuous distribution of membrane domain properties was detected by the new method.  相似文献   
78.
A high-resolution multidimensional NMR study of ligand-binding to Escherichia coli malate synthase G (MSG), a 723-residue monomeric enzyme (81.4 kDa), is presented. MSG catalyzes the condensation of glyoxylate with an acetyl group of acetyl-CoA, producing malate, an intermediate in the citric-acid cycle. We show that despite the size of the protein, important structural and dynamic information about the molecule can be obtained on a per-residue basis. 15N-1HN residual dipolar couplings and carbonyl chemical shift changes upon alignment in Pf1 phage establish that there are no significant domain reorientations in the molecule upon ligand binding, in contrast to what was anticipated on the basis of both the X-ray structure of the glyoxylate-bound form of the enzyme and structural studies of a related set of proteins. The chemical shift changes of 1HN, 15N and 13CO nuclei upon binding of pyruvate, a glyoxylate-mimicking inhibitor, and acetyl-CoA have been mapped onto the three-dimensional structure of the molecule. Binding constants of pyruvate, glyoxylate, and acetyl-CoA (in the presence of pyruvate) have been measured, along with the kinetic parameters for glyoxylate and pyruvate binding. The on-rates of pyruvate and glyoxalate binding, approximately 1.2 x 10(6)M(-1)s(-1) and approximately 2.7 x 10(6)M(-1)s(-1), respectively, are significantly lower than what is anticipated from a simple diffusion-controlled process. Some structural implications of the chemical shift perturbations upon binding and the estimated ligand on-rates are discussed.  相似文献   
79.
The complete sequences and secondary structures of the mitochondrial small subunit (SSU) ribosomal RNAs of both mostly cultivated mushrooms Agaricus bisporus (1930 nt) and Lentinula edodes (2164 nt) were achieved. These secondary structures and that of Schizophyllum commune (1872 nt) were compared to that previously established for Agrocybe aegerita. The four structures are near the model established for Archae, Bacteria, plastids, and mitochondria; particularly the helices 23 and 37, described as specific to bacteria, are present. Within the four Agaricales (Homobasidiomycota), the SSU-rRNA core is conserved in size (966 to 1009 nt) with the exception of an unusual extension of 40 nt in the H17 helix of S. commune. The four core sequences possess 76% of conserved positions and a cluster of C in their 3 end, which could constitute a signal involved in the RNA maturation process. Among the nine putative variable domains, three (V3, V5, V7) do not show significant length variations and possess similar percentages of conserved positions (69%) than the core. The other six variable domains show important length variations, due to independent large size inserted/deleted sequences, and higher rates of nucleotide substitutions than the core (only 31% of conserved positions between the four species). Interestingly, the inserted/deleted sequences are located in few preferential sites (hot spots for insertion/deletion) where they seem to arise or disappear haphazardly during evolution. These sites are located on the surface of the tertiary structure of the 30S ribosomal subunit, at the beginning of hairpin loops; the insertions lead to a lengthening of existing hairpins or to branching loops bearing up to five additional helices.  相似文献   
80.
An auxiliary beta2 subunit, when coexpressed with Slo alpha subunits, produces inactivation of the resulting large-conductance, Ca(2+) and voltage-dependent K(+) (BK-type) channels. Inactivation is mediated by the cytosolic NH(2) terminus of the beta2 subunit. To understand the structural requirements for inactivation, we have done a mutational analysis of the role of the NH(2) terminus in the inactivation process. The beta2 NH(2) terminus contains 46 residues thought to be cytosolic to the first transmembrane segment (TM1). Here, we address two issues. First, we define the key segment of residues that mediates inactivation. Second, we examine the role of the linker between the inactivation segment and TM1. The results show that the critical determinant for inactivation is an initial segment of three amino acids (residues 2-4: FIW) after the initiation methionine. Deletions that scan positions from residue 5 through residue 36 alter inactivation, but do not abolish it. In contrast, deletion of FIW or combinations of point mutations within the FIW triplet abolish inactivation. Mutational analysis of the three initial residues argues that inactivation does not result from a well-defined structure formed by this epitope. Inactivation may be better explained by linear entry of the NH(2)-terminal peptide segment into the permeation pathway with residue hydrophobicity and size influencing the onset and recovery from inactivation. Examination of the ability of artificial, polymeric linkers to support inactivation suggests that a variety of amino acid sequences can serve as adequate linkers as long as they contain a minimum of 12 residues between the first transmembrane segment and the FIW triplet. Thus, neither a specific distribution of charge on the linker nor a specific structure in the linker is required to support the inactivation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号