首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3445篇
  免费   147篇
  国内免费   143篇
  2024年   6篇
  2023年   35篇
  2022年   50篇
  2021年   52篇
  2020年   62篇
  2019年   85篇
  2018年   93篇
  2017年   74篇
  2016年   71篇
  2015年   98篇
  2014年   166篇
  2013年   360篇
  2012年   109篇
  2011年   179篇
  2010年   132篇
  2009年   138篇
  2008年   144篇
  2007年   152篇
  2006年   149篇
  2005年   129篇
  2004年   133篇
  2003年   121篇
  2002年   112篇
  2001年   78篇
  2000年   73篇
  1999年   60篇
  1998年   78篇
  1997年   70篇
  1996年   41篇
  1995年   68篇
  1994年   41篇
  1993年   60篇
  1992年   42篇
  1991年   49篇
  1990年   43篇
  1989年   48篇
  1988年   39篇
  1987年   32篇
  1986年   28篇
  1985年   33篇
  1984年   43篇
  1983年   23篇
  1982年   27篇
  1981年   19篇
  1980年   16篇
  1979年   25篇
  1978年   18篇
  1977年   8篇
  1975年   4篇
  1973年   7篇
排序方式: 共有3735条查询结果,搜索用时 296 毫秒
381.
A quantitative fluorogenic PCR method for group-specific methyl coenzyme M reductase subunit A genes (mcrA) from methanotrophic archaea was established and applied to the characterization of microbial communities in anoxic methane seep sediments at the accretionary prism of the Nankai Trough. All of the previously identified subgroups of anaerobic methanotroph (ANME) mcrA genes were detected in the cores up to 25 cm below the seafloor, but distributional patterns of mcrA genes were found to differ according to depth. These findings suggest a distinct distribution of phylogenetically and physiologically diverse methanotrophic archaea that mediate methane oxidation in the anoxic sediments. This quantification method will contribute to future investigations of methanotrophic microbial ecosystems in anoxic marine sediments.  相似文献   
382.
In the present study, we investigated whether DL-alpha-lipoic acid (LA) supplementation could have prooxidant or antioxidant effects on oxidative protein damage parameters such as protein carbonyl (PCO), nitrotyrosine (NT), advanced oxidation protein products (AOPP), and protein thiol (P-SH), as well as oxidative stress parameters such as total thiol (T-SH), non-protein thiol (Np-SH), and lipid hydroperoxide (LHP) in the brain and the skeletal muscle tissue of aged rats. PCO, and NT levels were increased, AOPP and P-SH levels were not changed in the brain tissue of aged rats given LA supplementation. On the other hand, TSH, Np-SH, and LHP levels were decreased in the brain tissue of aged rats given LA supplementation. The levels of the same parameters were not significantly different in the skeletal muscle tissue of aged rats given LA supplementation. The increased levels of protein oxidation markers such as PCO, and NT in the brain tissue of LA-supplemented aged rats compared with non-supplemented aged rats may suggest that oxidative protein damage is increased in LA-supplemented aged rats. We assume that an explanation for our findings regarding LA supplementation on protein oxidation markers in the brain tissue of aged rats may be due to the prooxidant effects of LA. Depending on post-mitotic tissue type and dosage of LA, the prooxidant effects of LA supplementation, should be considered in future studies.  相似文献   
383.
The purpose of this study was to investigate the effect of metal-catalyzed oxidation by H2O2 on the structure, oligomerization, and chaperone function of αA- and αB-crystallins. Recombinant αA-and αB-crystallins were prepared by expressing them in E. coli and purifying by size-exclusion chromatography. They were incubated with 1.5 mM H2O2 and 0.1 mM FeCl3 at 37 C for 24 hrs and the reaction was stopped by adding catalase. Structural changes due to oxidation were ascertained by circular dichroism (CD) measurements and chaperone activity was assayed with alcohol dehydrogenase (ADH) and insulin as target proteins. The oligomeric nature of the oxidized proteins was assessed by molecular sieve HPLC. The secondary structure of the oxidized αA- and αB-crystallins has been substantially altered due to significant increase in random coils, in addition to decrease in β-sheet or α-helix contents. The tertiary structure also showed significant changes indicative of different mode of folding of the secondary structural elements. Chaperone function was significantly compromised as supported by nearly 50% loss in chaperone activity. Oxidation also resulted in the formation of higher molecular weight (HMW) proteins as well as lower molecular weight (LMW) proteins. Thus, oxidation leads to disintegration of the oligomeric structure of αA- and αB-crystallins. Chaperone activity of the HMW fraction is normal whereas the LMW fraction lacks any chaperone activity. So, it appears that the formation of the LMW proteins is the primary cause of the chaperone activity loss due to oxidation.  相似文献   
384.
Hypochlorite (HOCl) attacks amino acid residues in LDL making the particle atherogenic. Tryptophan is prone to free radical reactions and modification by HOCl. We hypothesized, that free tryptophan may quench the HOCl attack therefore protecting LDL. Free tryptophan inhibits LDL apoprotein modification and lipid oxidation. Tryptophan-HOCl metabolites associate with LDL reducing its oxidizability initiated by endothelial cells, Cu(2+) and peroxyl radicals. One tryptophan-HOCl metabolite was identified as 4-methyl-carbostyril which showed antioxidative activity when present during Cu(2+) mediated lipid oxidation, but did not associate with LDL. Indole-3-acetaldehyde, a decomposition product of tryptophan chloramine (the product of the tryptophan-HOCl reaction) was found to associate with LDL increasing its resistance to oxidation. Myeloperoxidase treatment of LDL in the presence of chloride, H(2)O(2) and tryptophan protected the lipoprotein from subsequent cell-mediated oxidation. We conclude that, in vivo, the activated myeloperoxidase system can generate antioxidative metabolites from tryptophan by the reaction of hypochlorite with this essential amino acid.  相似文献   
385.
The ability of hydrogenases isolated from Thiocapsa roseopersicina and Lamprobacter modestohalophilus to reduce metal ions and oxidize metals has been studied. Hydrogenases from both phototrophic bacteria oxidized metallic Fe, Cd, Zn and Ni into their ionic forms with simultaneous evolution of molecular hydrogen. The metal oxidation rate decreased in the series Zn>Fe>Cd>Ni and depended on the pH. The presence of methyl viologen in the reaction system accelerated this process. T. roseopersicina and L. modestohalophilus cells and their hydrogenases reduced Ni(II), Pt(IV), Pd(II) or Ru(III) to their metallic forms under H2 atmosphere. These results suggest that metals or metal ions can serve as electron donors or acceptors for hydrogenases from phototrophic bacteria.  相似文献   
386.
Mesalamine (5-aminosalicylic acid) is the drug of choice for the treatment of Crohn's disease. A scheme for the synthesis of 5-aminosalicylic acid (5-ASA) conjugates of dextrans was developed with a focus on Crohn's disease applications. Dextrans were oxidised using sodium periodate (NaIO(4)), where the aldehyde groups formed were coupled with the alpha-amino (-NH(2)) group of 5-ASA. The resulting imine bonds were unstable in water and were consequently reduced to secondary amine groups. The effects of different aspects of the conjugation reaction were studied. These included the following: the molecular weight of the dextrans, the molar proportion of NaIO(4) to the dextrans (for periodate oxidation), the pH of the conjugation solutions, the ratio 5-ASA to oxidised polysaccharide and the relationship between the degree of conjugation and the amount of enzyme hydrolysis. Conjugates incubated in HCl were stable in 0.5 and 1.0M HCl, but they underwent degradation in 2.0 and 4.0M HCl. Dextrans (MW 20,000) with various degrees of oxidation (12%, 26%, 46%, 65%, 90% and 93%) were also prepared. Each oxidised dextran sample was conjugated with 5-ASA, and the product was quantified by high-performance liquid chromatography (HPLC). Dextrans with a maximum degree of oxidation (93%) unsurprisingly gave maximum conjugation of 5-ASA (49.1mg per 100mg of product) but were resistant to dextranase hydrolysis. Less oxidised dextrans (12%) conjugated proportionally less 5-ASA (15.1mg per 100mg of product) but were successfully hydrolysed by dextranase, suggesting their potential applications for the treatment of Crohn's disease in the distal ileum and proximal colon.  相似文献   
387.
(Glucurono)arabinoxylans were extracted from barley husks and degraded with endo-beta-xylanase or subjected to periodate oxidation. The released oligosaccharide fragments were separated and isolated on Biogel-P2, and their structures were determined by NMR spectroscopy. The oligosaccharides identified consisted of beta-d-(1-->4)-linked xylopyranosyl residues, of which some were substituted at O-3 with alpha-l-arabinofuranosyl groups or at O-2 with 4-O-methylglucuronic acid. In addition to these substituents, a disaccharide side chain, 2-O-beta-d-xylopyranosyl-alpha-l-arabinofuranose, attached at position O-3 of the main chain, was proved to exist in arabinoxylan from barley husks. The compound was fully characterized with NMR, and all (1)H and (13)C NMR signals were assigned. The arabinose to xylose ratio was low (approximately 0.2) and no 2,3-disubstitution existed. No blocks of substituted xylose residues could be observed along the main chain.  相似文献   
388.
Treatment of F-actin with the peroxynitrite-releasing agent 3-morpholinosydnonimine (SIN-1) produced a dose-dependent F-actin depolymerization. This is due to released peroxynitrite because it is not produced by 'decomposed SIN-1', and it is prevented by superoxide dismutase concentrations efficiently preventing peroxynitrite formation. F-actin depolymerization has been found to be very sensitive to peroxynitrite, as exposure to fluxes as low as 50-100nM peroxynitrite leads to nearly 50% depolymerization in about 1h. G-actin polymerization is also impaired by peroxynitrite although with nearly 2-fold lower sensitivity. Exposure of F-actin to submicromolar fluxes of peroxynitrite produced cysteine oxidation and also a blockade of the ability of actin to stimulate myosin ATPase activity. Our results suggest that an imbalance of the F-actin/G-actin equilibrium can account for the observed structural and functional impairment of myofibrils under the peroxynitrite-mediated oxidative stress reported for some pathophysiological conditions.  相似文献   
389.
GroEL undergoes an important functional and structural transition when oxidized with hydrogen peroxide (H2O2) concentrations between 15 and 20mM. When GroEL was incubated for 3h with 15 mM H2O2, it retained its quaternary structure, chaperone and ATPase activities. Under these conditions, GroEL's cysteine and tyrosine residues remained intact. However, all the methionine residues of the molecular chaperone were oxidized to the corresponding methionine-sulfoxides under these conditions. The oxidation of the methionine residues was verified by the inability of cyanogen bromide to cleave at the carboxyl side of the modified methionine residues. The role for the proportionately large number (23) of methionine residues in GroEL has not been identified. Methionine residues have been reported to have an antioxidant activity in proteins against a variety of oxidants produced in biological systems including H2O2. The carboxyl-terminal domain of GroEL is rich in methionine residues and we hypothesized that these residues are involved in the protection of GroEL's functional structure by scavenging H2O2. When GroEL was further incubated for the same time, but with increasing concentrations of H2O2 (>15 mM), the oxidation of GroEL's cysteine residues and a significant decrease of the tyrosine fluorescence due to the formation of dityrosines were observed. Also, at these higher concentrations of H2O2, the inability of GroEL to hydrolyze ATP and to assist the refolding of urea-unfolded rhodanese was observed.  相似文献   
390.
Human IgG4 subtype antibodies have often been reported to have a significant portion (5-50%) of a heavy chain-light chain dimer ("half-antibody") on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), in which the heavy chain is not covalently linked through the hinge disulfides to another heavy chain. We demonstrate here that there can be artifactual sources of half-antibody. One occurred during SDS-PAGE sample preparation where rapid disulfide scrambling was initiated by preexisting free sulfhydryls in the monoclonal antibody (mAb) and by free sulfhydryl produced by destruction of disulfide bonds during heating. Inclusion of N-ethylmaleimide in the sample buffer prevented the disulfide scrambling. Presumably, cyclization of the flexible IgG4 hinge during this disulfide scrambling leads to the preferential separation of heavy chains. A second condition producing half-antibody was reoxidation after exposure to reductant, where 46% of the antibody was trapped in the intrachain disulfide form. The amount of half-antibody was reduced to 4% by reoxidation in the presence of a mixture of oxidized and reduced glutathione. When the improved sample preparation conditions were used, IgG4 mAb freshly isolated from cells contained 4.5-15% half-antibody, indicating that equilibration of the interchain and intrachain hinge disulfide pairing was not always attained in cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号