首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   669篇
  免费   10篇
  国内免费   12篇
  2023年   5篇
  2022年   6篇
  2021年   2篇
  2020年   1篇
  2019年   9篇
  2018年   11篇
  2017年   11篇
  2016年   11篇
  2015年   22篇
  2014年   44篇
  2013年   42篇
  2012年   45篇
  2011年   49篇
  2010年   53篇
  2009年   25篇
  2008年   28篇
  2007年   32篇
  2006年   39篇
  2005年   29篇
  2004年   35篇
  2003年   26篇
  2002年   17篇
  2001年   7篇
  2000年   8篇
  1999年   5篇
  1998年   10篇
  1997年   11篇
  1996年   3篇
  1995年   14篇
  1994年   9篇
  1993年   8篇
  1992年   7篇
  1991年   6篇
  1990年   8篇
  1989年   8篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   8篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1977年   2篇
  1975年   1篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有691条查询结果,搜索用时 281 毫秒
81.
The P2X7 receptor is widely recognized to mediate the proinflammatory effects of extracellular ATP. However this receptor in the absence of ATP may have a function unrelated to inflammation. Our data show that P2X7 expressed on the surface of monocyte/macrophages or on epithelial HEK-293 cells greatly augments the engulfment of latex beads and live and heat-killed bacteria by effector phagocyte in the absence of ATP and serum. The expression of P2X7 on the effector also confers the ability to phagocytose apoptotic target cells and an accumulation of P2X7 can be seen at the attachment point to the target. Activation of the P2X7 receptor by ATP causes a slow dissociation (over 10–15 min) of nonmuscle myosin from the P2X7 membrane complex and abolishes further P2X7-mediated phagocytosis of these targets. The recent crystal structure of the homologous zebrafish P2X4 receptor shows an exposed “nose” of the ectodomain (residues 115–162) which contains three of the five disulfide bonds conserved in all P2X receptors. Three short biotin-labeled peptides mimicking sequence of this exposed region bound to apoptotic target cells but not to either viable cells or to other target particles. All three peptides contained one or two cysteine residues and their replacement by alanine abolished peptide binding. These data implicate thiol-disulfide exchange reactions in the initial tethering of apoptotic cells to macrophage and establish P2X7 as one of the scavenger receptors involved in the recognition and removal of apoptotic cells in the absence of extracellular ATP and serum.  相似文献   
82.
83.
Functional expression of lipase B from Pseudozyma antarctica (PalB) in the cytoplasm of Escherichia coli BL21(DE3) and its mutant derivative Origami B(DE3) was explored. Coexpression of DsbA was found to be effective in enhancing PalB expression. The improvement was particularly pronounced with Origami B(DE3) as a host, suggesting that both folding and disulfide bond formation may be major factors limiting PalB expression. Fusion tag technique was also explored by constructing several PalB fusions for the evaluation of their expression performance. While the solubility was enhanced for most PalB fusions, only the DsbA tag was effective in boosting PalB activity, possibly by both enhanced solubility and correct disulfide bond formation. Our results suggest that PalB activity is closely associated with correct disulfide bond formation, and increased solubilization by PalB fusions does not necessarily result in activity enhancement.  相似文献   
84.
The chloroplast ATP synthase synthesizes ATP from ADP and free phosphate coupled by the electrochemical potential across the thylakoid membrane in the light. The light-dependent regulation of ATP synthase activity is carried out in part through redox modulation of a cysteine disulfide bridge in CF1 gamma-subunit. In order to investigate the function of the redox regulatory domain and the physiological significance of redox modulation for higher plants, we designed four mutations in the redox regulatory domain of the gamma-subunit to create functional mimics of the permanently reduced form of the gamma-subunit. While the inability to reduce the regulatory disulfide results in lower photosynthesis and growth, unexpectedly, the results reported here show that inability to reoxidize the dithiol may not be of any direct detriment to plant photosynthetic performance or growth.  相似文献   
85.
Nicotinamide adenine dinucleotide (NAD) derives from quinolinic acid which is synthesized in Escherichia coli from l-aspartate and dihydroxyacetone phosphate through the concerted action of l-aspartate oxidase and the [4Fe-4S] quinolinate synthase (NadA). Here, we addressed the question of the identity of the cluster ligands. We performed in vivo complementation experiments as well as enzymatic, spectroscopic and structural in vitro studies using wild-type vs. Cys-to-Ala mutated NadA proteins. These studies reveal that only three cysteine residues, the conserved Cys113, Cys200 and Cys297, are ligands of the cluster. This result is in contrast to the previous proposal that pointed the three cysteines of the C(291)XXC(294)XXC(297) motif. Interestingly, we demonstrated that Cys291 and Cys294 form a disulfide bridge and are important for activity.  相似文献   
86.
Conformational preferences of a group of hexapeptides containing two dehydroamino acid residues in Positions 2 and 5 in peptide chain were investigated by means of spectroscopic methods (NMR and CD) and theoretical calculations. In the case of dimethylsulfoxide (DMSO) solution, only peptide with free N-termini adopted rigid 3(10)-helical conformation, for the rest of examined peptides extended and "zig-zag" conformers were predominant. CD measurements showed that only in chloroform solution the conformational freedom of investigated peptides was restricted.  相似文献   
87.
蛋白质交联的研究进展   总被引:2,自引:0,他引:2  
蛋白质共价交联不但存在于一些生理过程 ,还与一些神经性疾病的发病机理相关。本文综述国内外 3种观点 ,阐述蛋白质由功能体 /单体转变成交联的二聚体 /多聚体的分子机理  相似文献   
88.
Recent advances in research on the physiological roles of phosphoinositides in eukaryotic organisms indicate a need to distinguish molecular phosphoinositide species on the basis of their characteristic head groups as well as their glycerolipid moieties. Accurate identification of phosphoinositide species in biological samples poses an analytical challenge, because structurally similar inositol phosphate head groups must be resolved, as must lipid-associated fatty acids. Although intact phosphoinositide species have been successfully analyzed, such analyses employ state-of-the-art liquid chromatography/mass spectrometry and require expensive equipment not accessible to many researchers. Described here is a cost-efficient and reliable alternative developed by adaptation of a combination of classic methods for lipid analysis, thin-layer chromatography and gas chromatography.  相似文献   
89.
To investigate the role of disulfide bonds in the capsid structure, a recombinant JC virus-like particle (VLP) was used. The major capsid protein, VP1, of the JC virus was expressed in yeast cells. The yeast-expressed VP1 was self-assembled into a VLP. Disulfide bonds were found in the VLP which caused dimeric and trimeric VP1 linkages as demonstrated by non-reducing SDS–PAGE. The VLP remained intact when disulfide bonds were reduced by dithiothreitol. The VLP without disulfide bonds could be disassembled into capsomeres by EGTA alone, but those with disulfide bonds could not be disassembled by EGTA. Capsomeres were reassembled into VLPs in the presence of calcium ions. Capsomeres formed irregular aggregations instead of VLPs when treated with diamide to reconstitute the disulfide bonds. These results indicate that disulfide bonds play an important role in maintaining the integrity of the JC VLP by protecting calcium ions from chelation.  相似文献   
90.
Vitamin K epoxide reductase complex subunit 1 (VKORC1) reduces vitamin K epoxide in the vitamin K cycle for post-translational modification of proteins that are involved in a variety of biological functions. However, the physiological function of VKORC1-like 1 (VKORC1L1), a paralogous enzyme sharing about 50% protein identity with VKORC1, is unknown. Here we determined the structural and functional differences of these two enzymes using fluorescence protease protection (FPP) assay and an in vivo cell-based activity assay. We show that in vivo VKORC1L1 reduces vitamin K epoxide to support vitamin K-dependent carboxylation as efficiently as does VKORC1. However, FPP assays show that unlike VKORC1, VKORC1L1 is a four-transmembrane domain protein with both its termini located in the cytoplasm. Moreover, the conserved loop cysteines, which are not required for VKORC1 activity, are essential for VKORC1L1''s active site regeneration. Results from domain exchanges between VKORC1L1 and VKORC1 suggest that it is VKORC1L1''s overall structure that uniquely allows for active site regeneration by the conserved loop cysteines. Intermediate disulfide trapping results confirmed an intra-molecular electron transfer pathway for VKORC1L1''s active site reduction. Our results allow us to propose a concerted action of the four conserved cysteines of VKORC1L1 for active site regeneration; the second loop cysteine, Cys-58, attacks the active site disulfide, forming an intermediate disulfide with Cys-139; the first loop cysteine, Cys-50, attacks the intermediate disulfide resulting in active site reduction. The different membrane topologies and reaction mechanisms between VKORC1L1 and VKORC1 suggest that these two proteins might have different physiological functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号