首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1002篇
  免费   72篇
  国内免费   66篇
  1140篇
  2024年   5篇
  2023年   21篇
  2022年   29篇
  2021年   34篇
  2020年   32篇
  2019年   47篇
  2018年   42篇
  2017年   22篇
  2016年   35篇
  2015年   34篇
  2014年   75篇
  2013年   102篇
  2012年   45篇
  2011年   73篇
  2010年   53篇
  2009年   53篇
  2008年   56篇
  2007年   67篇
  2006年   37篇
  2005年   39篇
  2004年   39篇
  2003年   42篇
  2002年   41篇
  2001年   18篇
  2000年   11篇
  1999年   14篇
  1998年   7篇
  1997年   10篇
  1996年   3篇
  1995年   6篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   9篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1980年   1篇
排序方式: 共有1140条查询结果,搜索用时 0 毫秒
71.
P2Y receptors are G protein coupled receptors that respond to extracellular nucleotides to promote a multitude of signaling events. Our laboratory has purified several P2Y receptors with the goal of providing molecular insight into their: (1) ligand binding properties, (2) G protein signaling selectivities, and (3) regulation by RGS proteins and other signaling cohorts. The human P2Y1 receptor and the human P2Y12 receptor, both of which are intimately involved in ADP-mediated platelet aggregation, were purified to near homogeneity and studied in detail. After high-level expression from recombinant baculovirus infection of Sf9 insect cells, approximately 50% of the receptors were successfully extracted with digitonin. Purification of nearly homogeneous epitope-tagged P2Y receptor was achieved using metal-affinity chromatography followed by other traditional chromatographic steps. Yields of purified P2Y receptors range from 10 to 100 g/l of infected cells. Once purified, the receptors were reconstituted in model lipid vesicles along with their cognate G proteins to assess receptor function. Agonist-promoted increases in steady-state GTPase assays demonstrated the functional activity of the reconstituted purified receptor. We have utilized this reconstitution system to assess the action of various nucleotide agonists and antagonists, the relative G protein selectivity, and the influence of other proteins, such as phospholipase C, on P2Y receptor-promoted signaling. Furthermore, we have identified the RGS expression profile of platelets and have begun to assess the action of these RGS proteins in a reconstituted P2Y receptor/G protein platelet model.  相似文献   
72.
Abstract

Urotensin‐II (U‐II) was identified as the natural ligand of the G protein‐coupled receptor GPR14, which has been correspondingly renamed Urotensin‐II receptor (U2R). The tissue distribution of U2R and the pharmacological effects of U‐II suggest a novel neurohormonal system with potent cardiovascular effects. We here report the human rhabdomyosarcoma cell line TE‐671 as the first natural and endogenous source of functional U2R in an immortalized cell line. In TE‐671 cells, U‐II stimulated extracellular signal regulated kinase phosphorylation and increased c‐fos mRNA expression. Furthermore, we demonstrate that the expression of U2R mRNA and functional U‐II high affinity binding sites are serum‐responsive and that they are specifically up‐regulated by interferon γ (IFNγ). We propose that IFNγ contributes to the previously observed increase of U2R density in the heart tissue of congestive heart failure (CHF) patients and we suggest that U2R up‐regulation, as a consequence of an inflammatory response, could lead to a clinical worsening of this disease.  相似文献   
73.
74.
Abstract

G-Protein Coupled Estrogen Receptor 1 (GPER1), also known as G-Protein Coupled Receptor 30 (GPR30) and initially considered an orphan receptor, has become one of the most important pharmacological targets in cardiovascular research. Since the gene encoding this putative receptor was cloned nearly 20 years ago, researchers have addressed its role in various aspects of physiology, including cardioprotection. Although extensive research has been carried out to understand the role of GPER1 as a pharmacological target to treat cardiovascular diseases, there are few current reviews addressing the overall cardioprotective benefits of this receptor and the signaling intermediates involved. This review considers the origins of GPER1, its cell biology, its physiological and pharmacological roles as a therapeutic target in cardiovascular disease, and what future research on GPER1 might entail. More specifically, the review focuses on GPER1 regulation of Angiotensin Type I Receptor (AT1R) and the role of estrogen receptors, epidermal growth factor receptor (EGFR) and matrix metalloproteinases (MMPs) in bringing about the cardioprotective effects of GPER1. Areas where improved knowledge of GPER1 biology is still needed to better understand the receptor’s cardioprotective effects are also discussed.  相似文献   
75.
76.
《Current biology : CB》2019,29(22):3838-3850.e3
  1. Download : Download high-res image (221KB)
  2. Download : Download full-size image
  相似文献   
77.
78.
Sjögren B  Svenningsson P 《FEBS letters》2007,581(26):5115-5121
Studies using HeLa cells expressing 5-HT7 receptors showed that detergent resistant membranous lipid rafts purified by sucrose gradient centrifugation contained 5-HT7 receptors and caveolin-1. Caveolin-1 siRNA-mediated knockdown or serotonin (5-HT) treatment caused significant reductions of maximum [3H]5-HT binding to 5-HT7 receptors and total immunoreactivity of membranous 5-HT7 receptors in intact cells. Co-treatment with 5-HT, caveolin-1 siRNA and methyl-beta-cyclodextrin had no additive effects on reducing maximum binding of [3H]5-HT to 5-HT7 receptors. 5-HT-mediated reduction of [3H]5-HT binding to 5-HT7 receptors was counteracted by genistein, but not by sucrose. Caveolin-1, specifically localized in cholesterol-enriched lipid rafts, appears to regulate constitutive and agonist-stimulated cell surface levels of 5-HT7 receptors via a clathrin-independent mechanism.  相似文献   
79.
Zhao C  Slevin JT  Whiteheart SW 《FEBS letters》2007,581(11):2140-2149
N-ethylmaleimide sensitive factor (NSF) is an ATPases associated with various cellular activities protein (AAA), broadly required for intracellular membrane fusion. NSF functions as a SNAP receptor (SNARE) chaperone which binds, through soluble NSF attachment proteins (SNAPs), to SNARE complexes and utilizes the energy of ATP hydrolysis to disassemble them thus facilitating SNARE recycling. While this is a major function of NSF, it does seem to interact with other proteins, such as the AMPA receptor subunit, GluR2, and beta2-AR and is thought to affect their trafficking patterns. New data suggest that NSF may be regulated by transient post-translational modifications such as phosphorylation and nitrosylation. These new aspects of NSF function as well as its role in SNARE complex dynamics will be discussed.  相似文献   
80.
Tirone F  Cox JA 《FEBS letters》2007,581(6):1202-1208
Superoxide generation by NADPH oxidase 5 (NOX5) is regulated by Ca(2+) through intramolecular activation of the C-terminal catalytic domain by the EF-hand-containing N-terminal regulatory domain. The C terminus contains a consensus calmodulin-binding domain (CaMBD), which, however, is not the binding site of the N-terminal regulatory domain. Here we show by pull down, cross-linking, fluorimetry and by enzymatic assays, that calmodulin binds to this CaMBD in a Ca(2+)-dependent manner, changes its conformation and increases the Ca(2+) sensitivity of the N terminus-regulated enzymatic activity. This mechanism represents an additional sophistication in the regulation of superoxide production by NOX5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号