首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1000篇
  免费   72篇
  国内免费   65篇
  2024年   4篇
  2023年   19篇
  2022年   29篇
  2021年   34篇
  2020年   32篇
  2019年   47篇
  2018年   42篇
  2017年   22篇
  2016年   35篇
  2015年   34篇
  2014年   75篇
  2013年   102篇
  2012年   45篇
  2011年   73篇
  2010年   53篇
  2009年   53篇
  2008年   56篇
  2007年   67篇
  2006年   37篇
  2005年   39篇
  2004年   39篇
  2003年   42篇
  2002年   41篇
  2001年   18篇
  2000年   11篇
  1999年   14篇
  1998年   7篇
  1997年   10篇
  1996年   3篇
  1995年   6篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   9篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1980年   1篇
排序方式: 共有1137条查询结果,搜索用时 62 毫秒
31.
A low molecular weight anti-platelet peptide (6.9 kDa) has been purified from Naja kaouthia venom and was named KT-6.9. MALDI-TOF/TOF mass spectrometry analysis revealed the homology of KT-6.9 peptide sequence with many three finger toxin family members. KT-6.9 inhibited human platelet aggregation process in a dose dependent manner. It has inhibited ADP, thrombin and arachidonic acid induced platelet aggregation process in dose dependent manner, but did not inhibit collagen and ristocetin induced platelet aggregation. Strong inhibition (70%) of the ADP induced platelet aggregation by KT-6.9 suggests competition with ADP for its receptors on platelet surface. Anti-platelet activity of KT-6.9 was found to be 25 times stronger than that of anti-platelet drug clopidogrel. Binding of KT-6.9 to platelet surface was confirmed by surface plasma resonance analysis using BIAcore X100. Binding was also observed by a modified sandwich ELISA method using anti-KT-6.9 antibodies. KT-6.9 is probably the first 3FTx from Indian monocled cobra venom reported as a platelet aggregation inhibitor.  相似文献   
32.
A series of conformationally restricted GPR119 agonists were prepared based around a 3,8-diazabicyclo[3.2.1]octane scaffold. Examples were found to have markedly different pharmacology in mouse and human despite similar levels of binding to the receptor. This highlights the large effects on GPCR phamacology that can result from small structural changes in the ligand, together with inter-species differences between receptors.  相似文献   
33.
Abstract: Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding.  相似文献   
34.
Abstract

G-Protein Coupled Estrogen Receptor 1 (GPER1), also known as G-Protein Coupled Receptor 30 (GPR30) and initially considered an orphan receptor, has become one of the most important pharmacological targets in cardiovascular research. Since the gene encoding this putative receptor was cloned nearly 20 years ago, researchers have addressed its role in various aspects of physiology, including cardioprotection. Although extensive research has been carried out to understand the role of GPER1 as a pharmacological target to treat cardiovascular diseases, there are few current reviews addressing the overall cardioprotective benefits of this receptor and the signaling intermediates involved. This review considers the origins of GPER1, its cell biology, its physiological and pharmacological roles as a therapeutic target in cardiovascular disease, and what future research on GPER1 might entail. More specifically, the review focuses on GPER1 regulation of Angiotensin Type I Receptor (AT1R) and the role of estrogen receptors, epidermal growth factor receptor (EGFR) and matrix metalloproteinases (MMPs) in bringing about the cardioprotective effects of GPER1. Areas where improved knowledge of GPER1 biology is still needed to better understand the receptor’s cardioprotective effects are also discussed.  相似文献   
35.
G-protein coupled receptors (GPCRs) form a ternary complex of agonist, receptor and G-proteins during primary signal transduction at the cell membrane. Downstream signalling is thought to be preceded by the process of dissociation of Gα and Gβγ subunits, thus exposing new surfaces to interact with downstream effectors. We demonstrate here for the first time, the dissociation of heterotrimeric G-protein subunits (i.e., Gα and Gβγ) following agonist-induced GPCR (α2A-adrenergic receptor; α2A-AR) activation in a cell-free assay system. α2A-AR membranes were reconstituted with the G-proteins (±hexahistidine-tagged) Gαi1 and Gβ1γ2 and functional signalling was determined following activation of the reconstituted receptor:G-protein complex with the potent agonist UK-14304, and [35S]GTPγS. In the presence of Ni2+-coated agarose beads, the activated his-tagged Gαi1his-[35S]GTPγS complex was captured on the Ni2+-presenting surface. When his-tagged Gβ1γ2 (Gβ1γ2his) was used with Gαi1, the [35S]GTPγS-bound Gαi1 was not present on the Ni2+-coated beads, but rather, it was separated from the β1γ2(his)-beads, demonstrating receptor-induced dissociation of Gα and Gβγ subunits. Treatment of the reconstituted α2A-AR membranes containing Gβ1γ2his:Gαi1 with imidazole confirmed the specificity for the Ni2+:G-protein surface dissociation of Gαi1 from Gβ1γ2his. These data demonstrate for the first time, the complete dissociation of the G-protein subunits and extend observations on the role of G-proteins in the assembly and disassembly of the ternary complex in the primary events of GPCR signalling.  相似文献   
36.
γ-Glutamylmethylamide synthetase and dried baker’s yeast cells were enclosed together in a dialysis membrane tube to produce theanine repeatedly by coupled fermentation with energy transfer. The membrane-enclosed enzyme preparation (M-EEP) formed approximately 600 mM theanine from glutamic acid and ethylamine at a 100% conversion rate. M-EEP maintained its productivity of theanine during six consecutive reactions in a mixture containing NAD+.  相似文献   
37.
In the developing cerebellum granule cell precursors (GCPs) proliferate in the external granule cell layer before differentiating and migrating to the inner granule cell layer. Aberrant GCP proliferation leads to medulloblastoma, the most prevalent form of childhood brain cancer. Here, we demonstrate that the calcium‐sensing receptor (CaSR), a homodimeric G‐protein coupled receptor, functions in conjunction with cell adhesion proteins, the integrins, to enhance GCP migration and cell homing by promoting GCP differentiation. During the second postnatal week a robust peak in CaSR expression was observed in GCPs; reciprocal immunoprecipitation experiments conducted during this period established that the CaSR and β1 integrins are present together in a macromolecular protein complex. Analysis of cell‐surface proteins demonstrated that activation of the CaSR by positive allosteric modulators promoted plasma membrane expression of β1 integrins via ERK2 and AKT phosphorylation and resulted in increased GCP migration toward an extracellular matrix protein. The results of in vivo experiments whereby CaSR modulators were injected i.c.v. revealed that CaSR activation promoted radial migration of GCPs by enhancing GCP differentiation, and conversely, a CaSR inhibitor disrupted GCP differentiation and promoted GCP proliferation. Our results demonstrate that an ion‐sensing G‐protein coupled receptor acts to promote neuronal differentiation and homing during cerebellar maturation. These findings together with those of others also suggest that CaSR/integrin complexes act to transduce extracellular calcium signals into cellular movement, and may function in this capacity as a universal cell migration/homing complex in the developing brain. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 375–389, 2016  相似文献   
38.
39.
Congenital stationary night blindness (CSNB) is an inherited and non‐progressive retinal dysfunction. Here, we present the crystal structure of CSNB‐causing T94I2.61 rhodopsin in the active conformation at 2.3 Å resolution. The introduced hydrophobic side chain prolongs the lifetime of the G protein activating metarhodopsin‐II state by establishing a direct van der Waals contact with K2967.43, the site of retinal attachment. This is in stark contrast to the light‐activated state of the CSNB‐causing G90D2.57 mutation, where the charged mutation forms a salt bridge with K2967.43. To find the common denominator between these two functional modifications, we combined our structural data with a kinetic biochemical analysis and molecular dynamics simulations. Our results indicate that both the charged G90D2.57 and the hydrophobic T94I2.61 mutation alter the dark state by weakening the interaction between the Schiff base (SB) and its counterion E1133.28. We propose that this interference with the tight regulation of the dim light photoreceptor rhodopsin increases background noise in the visual system and causes the loss of night vision characteristic for CSNB patients.  相似文献   
40.
Intrinsically disordered proteins (IDPs) are often involved in signaling and regulatory functions, through binding to cellular targets. Many IDPs undergo disorder‐to‐order transitions upon binding. Both the binding mechanisms and the magnitudes of the binding rate constants can have functional importance. Previously we have found that the coupled binding and folding of any IDP generally follows a sequential mechanism that we term dock‐and‐coalesce, whereby one segment of the IDP first docks to its subsite on the target surface and the remaining segments subsequently coalesce around their respective subsites. Here we applied our TransComp method within the framework of the dock‐and‐coalesce mechanism to dissect the binding kinetics of two Rho‐family GTPases, Cdc42 and TC10, with two intrinsically disordered effectors, WASP and Pak1. TransComp calculations identified the basic regions preceding the GTPase binding domains (GBDs) of the effectors as the docking segment. For Cdc42 binding with both WASP and Pak1, the calculated docking rate constants are close to the observed overall binding rate constants, suggesting that basic‐region docking is the rate‐limiting step and subsequent conformational coalescence of the GBDs on the Cdc42 surface is fast. The possibility that conformational coalescence of the WASP GBD on the TC10 surface is slow warrants further experimental investigation. The account for the differences in binding rate constants among the three GTPase‐effector systems and mutational effects therein yields deep physical and mechanistic insight into the binding processes. Our approach may guide the selection of mutations that lead to redesigned binding pathways. Proteins 2016; 84:674–685. © 2016 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号