首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32237篇
  免费   2712篇
  国内免费   4064篇
  2024年   115篇
  2023年   699篇
  2022年   834篇
  2021年   1031篇
  2020年   1130篇
  2019年   1469篇
  2018年   1156篇
  2017年   1209篇
  2016年   1266篇
  2015年   1336篇
  2014年   1720篇
  2013年   2310篇
  2012年   1308篇
  2011年   1599篇
  2010年   1284篇
  2009年   1711篇
  2008年   1764篇
  2007年   1744篇
  2006年   1606篇
  2005年   1484篇
  2004年   1318篇
  2003年   1191篇
  2002年   1066篇
  2001年   847篇
  2000年   725篇
  1999年   788篇
  1998年   605篇
  1997年   567篇
  1996年   513篇
  1995年   518篇
  1994年   503篇
  1993年   382篇
  1992年   357篇
  1991年   346篇
  1990年   282篇
  1989年   256篇
  1988年   232篇
  1987年   217篇
  1986年   172篇
  1985年   202篇
  1984年   209篇
  1983年   144篇
  1982年   179篇
  1981年   118篇
  1980年   122篇
  1979年   104篇
  1978年   81篇
  1977年   48篇
  1976年   41篇
  1974年   26篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Abstract

Identifying the source effect on heavy metals to human health risk is essential for devising and implementing restoration policies for polluted soils. For this purpose, eight heavy metals (As, Cd, Hg, Cr, Cu, Ni, Pb, and Zn) in soil profile samples (0–10, 10–20, 20–30, and 30–40?cm) collected in the area around aluminum-plastic manufacturing facilities (APMF) were determined. An absolute principal component score multiple linear regression (APCS-MLR) model supported by a health risk assessment (HRA) model was developed to determine the source apportionment of soil heavy metals and contribution rate of pollution sources to human health risk. Results showed significant accumulations of eight metals in the topsoil (0–20?cm), parent material, transportation, APMF, and agricultural practices were the four major contributing sources for heavy metals in soils, with average contribution percentages of 21.69%, 24.99%, 29.60%, and 14.25%, respectively. Carcinogenic risk factors for adults (1.23E-04) and children (1.32E-04) were found to be above the acceptable level (1E-06 to 1E-04). The health risk quantification results indicated that parent material, APMF, transportation, agricultural practices, and unidentified factors accounted for 55.76%, 14.48%, 12.09%, 10.13%, and 7.54% of the carcinogenic risk for children and adults. The adverse impacts of Cd, Zn, and Pb accumulations in soil coming from APMF activities were significant and need to receive more attention.  相似文献   
982.
Abstract

The purpose of the study was to acquire the source and evaluate the risk posed by heavy metals in road dust of steel industrial city (Anshan), Liaoning, Northeast China. Potential ecological risk index (RI), pollution index (PI) and geo-accumulation index (Igeo) were applied to evaluate the heavy metal pollution level, and the carcinogenic risk (RI) and hazard index (HI) were calculated to estimate the human health risk. The geographic information system maps clearly reveal the hot spots of heavy metal spatial distribution. Principle component analysis (PCA) and cluster analysis (CA) classified heavy metals into three groups. The metal Zn and Pb originate from the traffic emission, while Cd, Cr, Fe, Mn, Ni and Sb primarily come from industrial activities. These two pathways were the major source of heavy metals pollution by positive matrix factorization (PMF). The Igeo and PI values of heavy metals were decreased in the following order: Cd?>?Sb?>?Zn?>?Fe?>?Pb?>?Cu?>?Cr?>?Sn?>?Mn?>?Ni. The RI index showed the heavy metals were moderate to very high potential ecological risk. The HI values for children and adults presented a decreasing order of Cr?>?Pb?>?Ni?>?Cu?>?Cd?>?Zn. The HI also predicted a possibility of non-carcinogenic risk for children living in urban areas in comparison with adults.  相似文献   
983.
Abstract

Mercury is affected by the movement mechanisms in the environmental media and is normally present in dry and wet depositions and surface and water vapor, among other things. The rapid growth of mercury-related industries in the past two decades reflects the result of its increased use in water sources such as in the Shimen reservoir, northern Taiwan. Consequently, residents living nearby are exposed to mercury almost every day. In light of the effects of continued exposure to the deleterious properties of mercury, this study provides modeling results of the atmosphere, soil, and freshwater over a 30-year period (2016–2046). The associated influences in the media and mercury contamination during this period will be determined via sensitivity analysis. Finally, the results of this study facilitate the assessment of potential health hazards associated with mercury inhalation and the ingestion of MeHg-contaminated fish. The mean daily dose (mg/kg) and hazard quotient (HQ) in the children and adult were 3.52E-13 (HQ = 4.10E-09) and 1.19E-13 (HQ = 1.39E-09) for Hg inhalation and 6.38E-05 (HQ = 6.38E-01) and 4.47E-05 (HQ = 4.47E-01) for ingestion of MeHg+-contaminated fish.  相似文献   
984.
Abstract

Chromium, ranking the second most among toxic heavy metal pollutants in the world, causing respiratory, cardiovascular and renal problems in human beings is under study herein. We examined the biological remediation of the carcinogenic Cr (VI) polluted soils by indigenous yeast isolates. The total element analysis of the treated sample was determined by Energy Dispersion X-ray Micro Analysis (EDXMA). The sample under study was observed to have a high concentration of 458.29 mgKg?1 Cr (VI), determined by Atomic Absorption Spectroscopy (AAS) and DPC analysis. The most tolerant isolate designated as CSR was used for in vitro and ex-situ bioremediation studies of Cr (VI). The isolate achieved significant bioremediation of 86% in vitro and 75.12% in ex-situ method. The optimal conditions for in vitro bioremediation were found to be 28?°C and a pH of 6. The ITS1, 5.8S rRNA and D1, D2 domain of LSU rRNA gene characterization of the isolate CSR illustrated that it belongs to Ustilago genera. The isolate was deposited in NCBI GenBank as Ustilago sp. CSR (KY284846). Although, Ustilago is generally a pathogenic fungus, our study opens up the scope of using Ustilago spp. for bioremediation of the carcinogenic heavy metal Chromium.  相似文献   
985.
Abstract

The rare fungus Hericium erinaceus (Bull.) Pers. was collected from temperate forests in northwestern Tunisia and described for the first time in Africa. In this paper, we report data about the distribution, ecology, morphology and molecular identification of H. erinaceus. Collected data may help expand our knowledge on this critically endangered rare species worldwide.  相似文献   
986.
In most dicotyledonous plants, leaf pavement cells exhibit complex jigsaw puzzle-like cell morphogenesis during leaf expansion. Although detailed molecular biological information and mathematical modeling of this jigsaw puzzle-like cell morphogenesis are now available, a full understanding of this process remains elusive. Recent reports have highlighted the importance of three-dimensional (3D) structures (i.e., anticlinal and periclinal cell wall) in understanding the mechanical models that describe this morphogenetic process. We believe that it is important to acquire 3D shapes of pavement cells over time, i.e., acquire and analyze four-dimensional (4D) information when studying the relationship between mechanical modeling and simulations and the actual cell shape. In this report, we have developed a framework to capture and analyze 4D morphological information of Arabidopsis thaliana cotyledon pavement cells by using both direct water immersion observations and computational image analyses, including segmentation, surface modeling, virtual reality and morphometry. The 4D cell models allowed us to perform time-lapse 3D morphometrical analysis, providing detailed quantitative information about changes in cell growth rate and shape, with cellular complexity observed to increase during cell growth. The framework should enable analysis of various phenotypes (e.g., mutants) in greater detail, especially in the 3D deformation of the cotyledon surface, and evaluation of theoretical models that describe pavement cell morphogenesis using computational simulations. Additionally, our accurate and high-throughput acquisition of growing cell structures should be suitable for use in generating in silico model cell structures.  相似文献   
987.
Woody plant encroachment is a major land management issue. Woody removal often aims to restore the original grassy ecosystem, but few studies have assessed the role of woody removal on ecosystem functions and biodiversity at global scales. We collected data from 140 global studies and evaluated how different woody plant removal methods affected biodiversity (plant and animal diversity) and ecosystem functions (plant production, hydrological function, soil carbon) across global rangelands. Our results indicate that the impact of removal is strongly context dependent, varying with the specific response variable, removal method, and traits of the target species. Over all treatments, woody plant removal increased grass biomass and total groundstorey diversity. Physical and chemical removal methods increased grass biomass and total groundstorey biomass (i.e., non‐woody plants, including grass biomass), but burning reduced animal diversity. The impact of different treatment methods declined with time since removal, particularly for total groundstorey biomass. Removing pyramid‐shaped woody plants increased total groundstorey biomass and hydrological function but reduced total groundstorey diversity. Environmental context (e.g., aridity and soil texture) indirectly controlled the effect of removal on biomass and biodiversity by influencing plant traits such as plant shape, allelopathic, or roots types. Our study demonstrates that a one‐size‐fits‐all approach to woody plant removal is not appropriate, and that consideration of woody plant identity, removal method, and environmental context is critical for optimizing removal outcomes. Applying this knowledge is fundamental for maintaining diverse and functional rangeland ecosystems as we move toward a drier and more variable climate.  相似文献   
988.
Global climate change has already caused bottom temperatures of coastal marine ecosystems to increase worldwide. These ecosystems face many pressures, of which fishing is one of the most important. While consequences of global warming on commercial species are studied extensively, the importance of the increase in bottom temperature and of variation in fishing effort is more rarely considered together in these exploited ecosystems. Using a 17 year time series from an international bottom trawl survey, we investigated covariations of an entire demersal ecosystem (101 taxa) with the environment in the Celtic Sea. Our results showed that over the past two decades, biotic communities in the Celtic Sea were likely controlled more by environmental variables than fisheries, probably due to its long history of exploitation. At the scale of the entire zone, relations between taxa and the environment remained stable over the years, but at a local scale, in the center of the Celtic Sea, dynamics were probably driven by interannual variation in temperature. Fishing was an important factor structuring species assemblages at the beginning of the time series (2000) but decreased in importance after 2009. This was most likely caused by a change in spatial distribution of fishing effort, following a change in targeted taxa from nephrops to deeper water anglerfish that did not covary with fishing effort. Increasing bottom temperatures could induce additional changes in the coming years, notably in the cold‐water commercial species cod, hake, nephrops, and American plaice. We showed that analyzing covariation is an effective way to screen a large number of taxa and highlight those that may be most susceptible to future simultaneous increases in temperature and changes in exploitation pattern by fisheries. This information can be particularly relevant for ecosystem assessments.  相似文献   
989.
Sugar profile and hydroxymethylfurfural (HMF) of Saudi honey were examined through high-performance liquid chromatography (HPLC) system equipped with refractive index and diode array detectors. The work was designed to assess the quality of various types of blossom honey i.e. Sider (Ziziphus spina-christi), Dhuhyana (Acacia asak), Sumra (Acacia tortilis), Qatada (Acacia hamulosa), Dhurum (Lavandula dentata), multiflora with majra (Hypoestes forskaolii), multiflora with herbs, Keena (Eucalyptus spp.) produced in the southwestern areas of the kingdom. Hierarchical cluster analysis (HCA), principal cluster analysis (PCA), and similarity and difference indices (SDI) were also applied to examine the possible grouping based on the studied quality parameters. Four main sugars (two monosaccharides i.e. fructose and glucose, two disaccharides i.e. sucrose and maltose) and HMF were investigated . The average values of fructose and glucose were in the range 33.10%–44.77% and 26.68%–37.91%, respectively. The maltose was present in all types of honey and its mean values were in the range of 0.37%–2.97%, while sucrose was absent in six types of honey, 0.25% in one unifloral honey, and 3.25% in one multi-floral honey. HMF was not detected in seven types of honey but was below the limit of quantification (0.13 mg/kg) in one type of honey. PCA displayed the accumulative variance of 79.96% for the initial two PCs suggesting that honey samples were not well distinguished by their sugar profile. Based on the sucrose and HMF contents, it was concluded that all types of blossom honey from the Asir province were of the best quality in the kingdom and met the international quality parameters.  相似文献   
990.
Non-destructive methods have been widely recognized for evaluating fruit quality traits of many horticultural crops and food processing industry. Destructive (analytical) test, and non-destructive evaluation of the quality traits were investigated and compared for ‘Red Rose’ tomato (Solanum lycopersicum L.) fruit grown under protected environment. Fresh tomato fruit at five distinctive maturity stages namely; breaker (BK), turning (TG), pink (PK), light-red (LR), and red (RD) were labeled and scanned using the handheld near infra-red (NIR) enhanced spectrometer at a wavelength range of 285–1200 nm. The labeled tomato samples were then measured analytically for flesh firmness, lycopene, β-carotene, total phenolic content (TPC) and total flavonoids content (TFC). The results revealed that quality traits could be estimated using NIR spectroscopy with a relatively high coefficient of determination (R2): 0.834 for total phenolic content, 0.864 for lycopene, 0.790 for total flavonoid content, 0.708 for β-carotene; and 0.679 for flesh firmness. The accumulation of Lyco and β-Car rapidly increased in tomatoes harvested between the TG and the LR maturity stages. Harvesting tomatoes at BK maturity stage resulted in significantly higher flesh firmness than harvesting at the later maturity stages. Tomato fruits had the lowest TPC and TFC contents at the earliest maturity stage (BK), while they had intermediate TPC and TFC levels at LR and RD maturity stages. NIR spectroscopic measurements of fruit firmness and lipophilic antioxidants in tomato fruit at various maturity stages were partially in accordance with those estimated by destructive (analytical) methods. Based on these findings, we recommend using non-destructive NIR spectroscopy as an effective tool for predicting tomato fruit quality during harvest stage and postharvest processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号