首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1258篇
  免费   59篇
  国内免费   18篇
  1335篇
  2024年   10篇
  2023年   10篇
  2022年   18篇
  2021年   32篇
  2020年   44篇
  2019年   32篇
  2018年   45篇
  2017年   22篇
  2016年   40篇
  2015年   46篇
  2014年   73篇
  2013年   128篇
  2012年   60篇
  2011年   51篇
  2010年   46篇
  2009年   64篇
  2008年   71篇
  2007年   80篇
  2006年   89篇
  2005年   44篇
  2004年   58篇
  2003年   53篇
  2002年   42篇
  2001年   26篇
  2000年   13篇
  1999年   10篇
  1998年   10篇
  1997年   7篇
  1996年   9篇
  1995年   8篇
  1994年   8篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   9篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1985年   4篇
  1984年   17篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   5篇
  1979年   5篇
  1978年   2篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
排序方式: 共有1335条查询结果,搜索用时 0 毫秒
21.
The existence of a 30‐nm fiber as a basic folding unit for DNA packaging has remained a topic of active discussion. Here, we characterize the supramolecular structures formed by reversible Mg2+‐dependent self‐association of linear 12‐mer nucleosomal arrays using microscopy and physicochemical approaches. These reconstituted chromatin structures, which we call “oligomers”, are globular throughout all stages of cooperative assembly and range in size from ~50 nm to a maximum diameter of ~1,000 nm. The nucleosomal arrays were packaged within the oligomers as interdigitated 10‐nm fibers, rather than folded 30‐nm structures. Linker DNA was freely accessible to micrococcal nuclease, although the oligomers remained partially intact after linker DNA digestion. The organization of chromosomal fibers in human nuclei in situ was stabilized by 1 mM MgCl2, but became disrupted in the absence of MgCl2, conditions that also dissociated the oligomers in vitro. These results indicate that a 10‐nm array of nucleosomes has the intrinsic ability to self‐assemble into large chromatin globules stabilized by nucleosome–nucleosome interactions, and suggest that the oligomers are a good in vitro model for investigating the structure and organization of interphase chromosomes.  相似文献   
22.
SUMOylation and ubiquitination are two essential post translational modifications (PTMs) involved in the regulation of important biological processes in eukaryotic cells. Identification of ubiquitin (Ub) and small ubiquitin-related modifier (SUMO)-conjugated lysine residues in proteins is critical for understanding the role of ubiquitination and SUMOylation, but remains experimentally challenging. We have developed a powerful in vitro Ub/SUMO assay using a novel high density peptide array incorporated within a microfluidic device that allows rapid identification of ubiquitination and SUMOylation sites on target proteins. We performed the assay with a panel of human proteins and a microbial effector with known target sites for Ub or SUMO modifications, and determined that 80% of these proteins were modified by Ub or specific SUMO isoforms at the sites previously determined using conventional methods. Our results confirm the specificity for both SUMO isoform and individual target proteins at the peptide level. In summary, this microfluidic high density peptide array approach is a rapid screening assay to determine sites of Ub and SUMO modification of target substrates, which will provide new insights into the composition, selectivity and specificity of these PTM target sites.  相似文献   
23.
Bacteriocins have been identified in many strains of lactic acid bacteria (LAB) which are a source of natural food preservatives and microbial inhibitors. Our objectives were to use a PCR array of primers to identify bacteriocin structural genes in Bac+ LAB. DNA sequence homology at the 5′- and 3′-ends of the various structural genes indicated that non-specific priming may allow PCR amplification of heterologous bacteriocin genes. Successful amplification was obtained by real-time PCR and confirmed by melting curve and agarose gel analysis. Sequence information specific to targeted bacteriocin structural genes from the intra-primer regions of amplimers was compared to sequences residing in GenBank. The bacteriocin PCR array allowed the successful amplification of bacteriocin structural genes from strains of Lactobacillus, Lactococcus, and Pediococcus including one whose amino acid sequence was unable to be determined by Edman degradation analysis. DNA sequence analysis identified as many as 3 bacteriocin structural genes within a given strain, identifying ten unique bacteriocin sequences that were previously uncharacterized (partial homology) and one that was 100% identical to sequences in GenBank. This study provides a rapid approach to sequence and identify bacteriocin structural genes among Bac+ LAB using a microplate bacteriocin PCR array.  相似文献   
24.
25.
26.
Zou L  Pang HL  Chan PH  Huang ZS  Gu LQ  Wong KY 《Carbohydrate research》2008,343(17):2932-2938
Carbohydrate biosensors, including carbohydrate arrays, are attracting increased attention for the comprehensive and high-throughput investigation of protein-carbohydrate interactions. Here, we describe an effective approach to fabricating a robust microplate-based carbohydrate array capable of probing protein binding and screening for inhibitors in a high-throughout manner. This approach involves the derivatization of carbohydrates with a trityl group through an alkyl linker and the immobilization of the trityl-derivatized carbohydrates (mannose and maltose) onto microplates noncovalently to construct carbohydrate arrays. The trityl carbohydrate derivative has very good immobilization efficiency for polystyrene microplates and strong resistance to aqueous washing. The carbohydrate arrays can probe the interactions with the lectin Concanavalin A and screen this protein for the well-known inhibitors methyl α-d-mannopyranoside and methyl α-d-glucopyranoside in a high-throughput manner. The method described in this paper represents a convenient way of fabricating robust noncovalent carbohydrate arrays on microplates and offers a convenient platform for high-throughput drug screening.  相似文献   
27.
    
Molecular recognition remains one of the most desirable means of cellular communication. Each cell offers a unique surface pattern of biomolecules that makes it very specific about the nature of molecules that interact with the cell. Protein–glycan interaction has been one of the most common forms of cell signaling. Glycans expressed on the cell surface interact with an exogenous protein, and in many cases lead to a physiological response. These carbohydrate-binding proteins, commonly known as lectins, are very specific to the glycan they bind to. An exogenous lectin interacting with an animal cell surface glycan is generally studied using the classical hemagglutination assay. However, this method presents certain challenges that make it imperative to design and develop novel methods that are more specific and efficient in their interaction. In the last decade, a few methods have been developed to analyze more diverse reactions and use a lesser amount of sample. In some cases, the processing of the sample is also reduced. This review discusses how the methods have evolved over the decades and how they have reduced error while becoming more efficient.  相似文献   
28.
The reduction by sulfide of exogenous ubiquinone is compared to the reduction of cytochromes in chromatophores of Rhodobacter capsulatus. From titrations with sulfide values for Vmax of 300 and 10 moles reduced/mg bacteriochlorophyll a·h, and for Km of 5 and 3 M were estimated, for decyl-ubiquinone-and cytochrome c-reduction, respectively. Both reactions are sensitive to KCN, as has been found for sulfide-quinone reductase (SQR) in Oscillatoria limnetica, which is a flavoprotein. Effects of inhibitors interfering with quinone binding sites suggest that at least part of the electron transport from sulfide in R. capsulatus employs the cytochrome bc 1-complex via the ubiquinone pool.Abbreviations BChl a bacteriochlorophyll a - DAD diaminodurene - decyl-UQ decyl-ubiquinone - LED light emitting diode - NQNO 2-n-nonyl-4-hydroxyquinoline-N-oxide - PQ-1 plastoquinone 1 - SQR sulfide-quinone reductase (E.C. 1.8.5.'.) - UQ ubiquinone 10 - Qc the quinone reduction site on the cytochrome b 6 f/bc 1, complex (also termed Qi or Qr or Qn) - Qs the quinone reduction site on SQR - Qz quinol oxidation site on the b 6 f/bc 1, complex (also termed Qo or Qp)  相似文献   
29.
    
Brain organoids with three-dimensional structure and tissue-like function are highly demanded for brain disease research and drug evaluation. However, to our knowledge, methods for measuring and analyzing brain organoid function have not been developed yet. This study focused on the frequency components of an obtained waveform below 500 Hz using planner microelectrode array (MEA) and evaluated the response to the convulsants pentylenetetrazol (PTZ) and strychnine as well as the antiepileptic drugs (AEDs) perampanel and phenytoin. Sudden and persistent seizure-like firing was observed with PTZ administration, displaying a concentration-dependent periodic activity with the frequency component enhanced even in one oscillation characteristic. On the other hand, in the administration of AEDs, the frequency of oscillation decreased in a concentration-dependent manner and the intensity of the frequency component in one oscillation also decreased. Interestingly, at low doses of phenytoin, a group of synchronized bursts was formed, which was different from the response to the perampanel. Frequency components contained information on cerebral organoid function, and MEA was proven useful in predicting the seizure liability of drugs and evaluating the effect of AEDs with a different mechanism of action. In addition, frequency component analysis of brain organoids using MEA is an important analysis method to perform in vitro to in vivo extrapolation in the future, which will help explore the function of the organoid itself, study human brain developments, and treat various brain diseases.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号