首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   7篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   5篇
  2018年   2篇
  2017年   6篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   13篇
  2012年   10篇
  2011年   10篇
  2010年   8篇
  2009年   6篇
  2008年   8篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2002年   3篇
  2000年   2篇
  1998年   1篇
  1994年   1篇
  1981年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
71.
Dietary specialization is generally considered to be a crucial factor in driving morphological evolution across extant and extinct vertebrates. The ability to adapt to a specific diet and to exploit ecological niches is thereby influenced by functional morphology and biomechanical properties. Differences in functional behaviour and efficiency can therefore allow dietary diversification and the coexistence of similarly adapted taxa. Therizinosauria, a group of secondarily herbivorous theropod dinosaurs, is characterized by a suite of morphological traits thought to be indicative of adaptations to an herbivorous diet. Digital reconstruction, theoretical modelling and computer simulations of the mandibles of therizinosaur dinosaurs provides evidence for functional niche partitioning in adaptation to herbivory. Different mandibular morphologies present in therizinosaurians were found to correspond to different dietary strategies permitting coexistence of taxa. Morphological traits indicative of an herbivorous diet, such as a downturned tip of the lower jaw and an expanded postdentary region, were identified as having stress mitigating effects. The more widely distributed occurrence of these purported herbivorous traits across different dinosaur clades suggests that these features also could have played an important role in the evolution and acquisition of herbivory in other groups.  相似文献   
72.
The stegosaurs are some of the most easily recognizable dinosaurs, but are surprisingly rare as fossils. Consequently much remains unknown about their palaeobiology, and every new stegosaurian find contributes to our understanding of the evolution of the clade. Since the last attempt to examine the evolutionary relationships of Stegosauria, new specimens have come to light, including the most complete individual of Stegosaurus ever found, new taxa have been described and, perhaps most importantly, new methods for analysis of cladistic datasets have been produced. In the light of these new data and technological advances, the phylogenetic relationships of the stegosaurs and basal armoured dinosaurs are investigated. The inclusion of continuous data results in much better resolution than was previously obtained, and the resulting single most parsimonious tree supports re‐erection of the genera Miragaia and Hesperosaurus, which had previously been synonymized with Dacentrurus and Stegosaurus respectively. The recently described genus Alcovasaurus is resolved as a basal thyreophoran, but this is most likely a consequence of a very high degree of missing data and the questionable ontogenetic stage of the specimen. Examination of the effects of continuous data on the analysis suggest that while it contains a phylogenetic signal congruent with that of discrete data and provides better resolution than discrete data alone, it can affect topologies in unpredictable ways, particularly in areas of the tree where there are large amounts of missing data. The phylogeny presented here will form the basis for future work on the palaeobiology of the plated dinosaurs.  相似文献   
73.
The dinosaur Diplodocus has a single, relatively large external bony narial orifice that is positioned far back between the orbits. In some mammals, such as elephants and tapirs, the caudal position of the narial opening is associated with a proboscis, so it has been suggested that Diplodocus possibly also had a trunk. In elephants, the facial nerve is large as it emerges from the brain. A branch of this nerve and a branch of the trigeminal nerve unite to form the proboscidial nerve that supplies the muscles of the powerful and complex motor system of the trunk. In contrast to the situation in modern elephants, the absolute as well as the relatively small size of the facial nerve in Diplodocus (deduced from an endocranial cast) indicates that there is no paleoneuroanatomical evidence for the presence of an elephant-like proboscis in this genus.  相似文献   
74.
Theropod forelimb design and evolution   总被引:4,自引:1,他引:3  
We examined the relationship between forelimb design and function across the 230-million-year history of theropod evolution. Forelimb disparity was assessed by plotting the relative contributions of the three main limb elements on a ternary diagram. Theropods were divided into five functional groups: predatory, reduced, flying, wing-propelled diving, and flighdess. Forelimbs which maintained their primitive function, predation, are similarly proportioned, but non-avian theropods with highly reduced forelimbs have relatively longer humeri. Despite the dramatically different forces imparted by the evolution of flight, forelimb proportions of basal birds are only slighdy different from those of their non-avian relatives. An increase in disparity accompanied the subsequent radiation of birds. Each transition to flightlessness has been accompanied by an increase in relative humeral length, which results from relatively short distal limb elements. We introduce theoretical predictions based on five biomechanical and developmental factors that may have influenced the evolution of theropod limb proportions.  相似文献   
75.
Fragmentary isolated remains of large (up to 20 m or more) sauropods from the Middle Jurassic (Bajocian) Khadir Formation of Khadir Island (Kachchh, W India) are described and compared in detail. Three of the bone fragments (a metacarpal, a first pedal claw and a fibula) can be assigned with confidence to the Camarasauromorpha and represent the oldest known record of that derived dinosaur group. The new finds from western India further close a temporal and geographical gap in our knowledge of sauropods and contribute to understanding their early phylogeny.   相似文献   
76.
Paul C. Sereno 《ZooKeys》2012,(226):1-225
Heterodontosaurids comprise an important early radiation of small-bodied herbivores that persisted for approximately 100 My from Late Triassic to Early Cretaceous time. Review of available fossils unequivocally establishes Echinodon as a very small-bodied, late-surviving northern heterodontosaurid similar to the other northern genera Fruitadens and Tianyulong. Tianyulong from northern China has unusual skeletal proportions, including a relatively large skull, short forelimb, and long manual digit II. The southern African heterodontosaurid genus Lycorhinus is established as valid, and a new taxon from the same formation is named Pegomastax africanus gen. n., sp. n. Tooth replacement and tooth-to-tooth wear is more common than previously thought among heterodontosaurids, and in Heterodontosaurus the angle of tooth-to-tooth shear is shown to increase markedly during maturation. Long-axis rotation of the lower jaw during occlusion is identified here as the most likely functional mechanism underlying marked tooth wear in mature specimens of Heterodontosaurus. Extensive tooth wear and other evidence suggests that all heterodontosaurids were predominantly or exclusively herbivores. Basal genera such as Echinodon, Fruitadens and Tianyulong with primitive, subtriangular crowns currently are known only from northern landmasses. All other genera except the enigmatic Pisanosaurus have deeper crown proportions and currently are known only from southern landmasses.  相似文献   
77.
《Current biology : CB》2022,32(3):570-585.e3
  1. Download : Download high-res image (240KB)
  2. Download : Download full-size image
  相似文献   
78.
Abstract:  Xenoposeidon proneneukos gen. et sp. nov. is a neosauropod represented by BMNH R2095, a well-preserved partial mid-to-posterior dorsal vertebra from the Berriasian–Valanginian Hastings Beds Group of Ecclesbourne Glen, East Sussex, England. It was briefly described by Lydekker in 1893, but it has subsequently been overlooked. This specimen's concave cotyle, large lateral pneumatic fossae, complex system of bony laminae and camerate internal structure show that it represents a neosauropod dinosaur. However, it differs from all other sauropods in the form of its neural arch, which is taller than the centrum, covers the entire dorsal surface of the centrum, has its posterior margin continuous with that of the cotyle, and slopes forward at 35 degrees relative to the vertical. Also unique is a broad, flat area of featureless bone on the lateral face of the arch; the accessory infraparapophyseal and postzygapophyseal laminae which meet in a V; and the asymmetric neural canal, small and round posteriorly but large and teardrop-shaped anteriorly, bounded by arched supporting laminae. The specimen cannot be referred to any known sauropod genus, and clearly represents a new genus and possibly a new 'family'. Other sauropod remains from the Hastings Beds Group represent basal Titanosauriformes, Titanosauria and Diplodocidae; X. proneneukos may bring to four the number of sauropod 'families' represented in this unit. Sauropods may in general have been much less morphologically conservative than is usually assumed. Since neurocentral fusion is complete in R2095, it is probably from a mature or nearly mature animal. Nevertheless, size comparisons of R2095 with corresponding vertebrae in the Brachiosaurus brancai holotype HMN SII and Diplodocus carnegii holotype CM 84 suggest a rather small sauropod: perhaps 15 m long and 7600 kg in mass if built like a brachiosaurid, or 20 m and 2800 kg if built like a diplodocid.  相似文献   
79.
The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister‐group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid‐Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node‐based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as “all descendants of the most recent common ancestor of birds and Triceratops”. Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and Spondylosoma absconditum. The identification of dinosaur apomorphies is jeopardized by the incompleteness of skeletal remains attributed to most basal dinosauromorphs, the skulls and forelimbs of which are particularly poorly known. Nonetheless, Dinosauria can be diagnosed by a suite of derived traits, most of which are related to the anatomy of the pelvic girdle and limb. Some of these are connected to the acquisition of a fully erect bipedal gait, which has been traditionally suggested to represent a key adaptation that allowed, or even promoted, dinosaur radiation during Late Triassic times. Yet, contrary to the classical “competitive” models, dinosaurs did not gradually replace other terrestrial tetrapods over the Late Triassic. In fact, the radiation of the group comprises at least three landmark moments, separated by controversial (Carnian‐Norian, Triassic‐Jurassic) extinction events. These are mainly characterized by early diversification in Carnian times, a Norian increase in diversity and (especially) abundance, and the occupation of new niches from the Early Jurassic onwards. Dinosaurs arose from fully bipedal ancestors, the diet of which may have been carnivorous or omnivorous. Whereas the oldest dinosaurs were geographically restricted to south Pangea, including rare ornithischians and more abundant basal members of the saurischian lineage, the group achieved a nearly global distribution by the latest Triassic, especially with the radiation of saurischian groups such as “prosauropods” and coelophysoids.  相似文献   
80.
Abstract: The Cretaceous dinosaur fauna of Indo‐Pakistan has remained poorly understood because of a lack of associated and articulated remains, proliferation of named species, and an incomplete understanding of the dinosaur clades present (e.g. abelisaurid theropods; titanosaur sauropods). Continued work on existing collections, and new discoveries of dinosaur material from India, Pakistan and elsewhere in Gondwana, has begun to resolve the composition and affinities of Indo‐Pakistani dinosaurs. Here, we provide archival evidence that documents associations between postcranial remains of a sauropod collected from Chhota Simla, India by C. A. Matley in the 1930s and later described as ‘Titanosaurus sp.’ This partial skeleton, which represents only the fifth such documented association from Indo‐Pakistan, is referable to Jainosaurus cf. septentrionalis and provides a fuller understanding of its anatomy and phylogenetic affinities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号