首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   7篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   5篇
  2018年   2篇
  2017年   6篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   13篇
  2012年   10篇
  2011年   10篇
  2010年   8篇
  2009年   6篇
  2008年   8篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2002年   3篇
  2000年   2篇
  1998年   1篇
  1994年   1篇
  1981年   1篇
排序方式: 共有109条查询结果,搜索用时 31 毫秒
11.
The sex of non-avian dinosaurs has been inferred on numerous occasions using a variety of anatomical criteria, but the efficacy of none has been proven. Nearly 50 years ago Romer suggested that the cranial-most or first chevron in the tails of some reptiles, including crocodilians, is sexually dimorphic. Recent work on this subject purportedly substantiated that the female first chevron articulates in a more caudal position than in males. Furthermore, it was concluded that this element is shorter in females. These phenotypic attributes theoretically provide a broader cloacal passageway for eggs by ovipositing females and a greater attachment area for male “penile retractor muscles”. Because theropod dinosaurs such as Tyrannosaurus rex presumably show similar variation in chevron anatomy, the same criteria has been advocated for sexing dinosaurs. We tested the neontological model for the chevron sexual dimorphism hypothesis using a skeletonized growth series of American alligators (Alligator mississippiensis) of known sex. No statistical support for the hypothesis was found. Furthermore, analysis of a diversity of crocodilian taxa from museum collections revealed similar findings suggesting the alligator results are not taxon specific. Study of well-preserved tyrannosaurid dinosaurs in museum collections showed nearly invariant chevron positioning like that seen in crocodilians. This suggests the usefulness of chevron anatomy for sexing dinosaurs is tenuous.  相似文献   
12.
The fragmentary remains of a juvenile rhabdodontid ornithopod from the Coal-bearing Complex of the Gosau Group (Lower Campanian, Grünbach syncline) at Muthmannsdorf near Wiener Neustadt, Lower Austria are revised. The material, probably belonging to a single individual, includes a right dentary (lectotype of Iguanodon suessi Bunzel, 1871, designated herein), teeth, a fragmentary parietal, fragments of scapula, ?radius, femur, tibia, two vertebrae (lost) and a manual ungual.The lectotype dentary does not provide clear autapomorphies or sufficient diagnostic features to determine its position within the Rhabdodontidae at generic level. By this “Iguanodon suessi” Bunzel, 1871 and the genus “Mochlodon” Seeley, 1881, to which it was latter referred as type species, cannot be characterized sufficiently by differential diagnosis and these are best considered nomina dubia. Based upon combined character comparisons (mainly postcranial features) the Muthmannsdorf ornithopod is referred herein to Zalmoxes Weishampel, Jianu, Csiki and Norman, 2003, a genus so far known from the late Maastrichtian of Romania. It probably but not evidently represents a yet unnamed species, most closely related to Zalmoxes shqiperorum Weishampel, Jianu, Csiki and Norman, 2003. At the present state of knowledge the Austrian material is not further diagnostic at the species level and kept in open nomenclature as Zalmoxes sp.  相似文献   
13.
The “Megalosaur” remains from Saint-Agnant (Charente-Maritime, France), reported as early as 1881 by Boissellier, are here described and figured for the first time. These bones, as well as a few additional specimens from the nearby locality of Soubise, belong in fact to an indeterminate sauropod. The stratigraphical position of these remains unambiguously indicates an infra-Cenomanian age. However, the presence in this area of continental deposits with Purbeckian and Wealden facies does not allow to decide between an earliest or late Early Cretaceous age.  相似文献   
14.
Theropod dinosaurs, an iconic clade of fossil species including Tyrannosaurus and Velociraptor, developed a great diversity of body size, skull form and feeding habits over their 160+ million year evolutionary history. Here, we utilize geometric morphometrics to study broad patterns in theropod skull shape variation and compare the distribution of taxa in cranial morphospace (form) to both phylogeny and quantitative metrics of biting behaviour (function). We find that theropod skulls primarily differ in relative anteroposterior length and snout depth and to a lesser extent in orbit size and depth of the cheek region, and oviraptorosaurs deviate most strongly from the "typical" and ancestral theropod morphologies. Noncarnivorous taxa generally fall out in distinct regions of morphospace and exhibit greater overall disparity than carnivorous taxa, whereas large-bodied carnivores independently converge on the same region of morphospace. The distribution of taxa in morphospace is strongly correlated with phylogeny but only weakly correlated with functional biting behaviour. These results imply that phylogeny, not biting function, was the major determinant of theropod skull shape.  相似文献   
15.
Fabien Knoll 《Geobios》2002,35(5):595
A new ornithischian skull from the Elliot Formation of southern Africa is described. The specimen is compared in detail with the fabrosaurid Lesothosaurus diagnosticus. It actually shares many characters with specimens of the syntypes of this species or specimens referred to it. It is nevertheless not identical to any of these specimens and it is, moreover, remarkably larger than them. The possibility of attributing this specimen to a so far undescribed ‘large fabrosaur’ from the same formation is discussed. It is concluded that the specimen in question in this paper, while being ascribable to the genus Lesothosaurus, cannot be determined to a specific level until the existence of two fabrosaurid species in the ‘Stormberg Group’ is demonstrated and their range of morphological and size variation is properly appraised.  相似文献   
16.
Fabien Knoll 《Geobios》2008,41(6):779
A review of the historical background of the material housed in the Staatliches Museum für Naturkunde (Stuttgart) and ascribed to Procompsognathus triassicus (Upper Triassic, Germany) is provided. The systematic position of the postcranial remains is discussed. The combined results of cladistic analyses suggest that the type material, an incomplete postcranial skeleton in two pieces (SMNS 12591), is from a theropod close to Segisaurus and Coelophysis. An isolated manus (SMNS 12352a) is definitely not theropodan, but could be from any small basal archosaur. The remarkable diversity of the carnivorous guild that dwelled in southern Germany before the end-Triassic events is underlined.  相似文献   
17.
The engineering analysis technique finite element analysis (FEA) is used here to investigate cranial stress and strain during biting and feeding in three phylogenetically disparate theropod taxa: Coelophysis bauri , Allosaurus fragilis and Tyrannosaurus rex . Stress patterns are generally similar in all taxa with the ventral region of the skull tensed whilst the dorsal aspect is compressed, although the skull is not purely behaving as a cantilever beam as there is no discernible neutral region of bending. Despite similarities, stress patterns are not wholly comparable: there are key differences in how certain regions of the skull contain stress, and it is possible to link such differences to cranial morphology. In particular, nasal morphology can be explained by the stress patterns revealed here. Tyrannosaurus models shear and compress mainly in the nasal region, in keeping with the indistinguishably fused and expanded morphology of the nasal bones. Conversely Allosaurus and Coelophysis models experience peak shear and compression in the fronto-parietal region (which is tightly interdigitated and thickened in the case of Allosaurus ) yet in contrast the nasal region is lightly stressed, corresponding to relatively gracile nasals and a frequently patent internasal suture evident in Allosaurus . Such differences represent alternate mechanical specializations between taxa that may be controlled by functional, phylogenetic or mechanical constraints. Creation of finite element models placed in a phylogenetic context permits the investigation of the role of such mechanical character complexes in the cranium of nonavian theropods and the lineage leading towards modern birds.  © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society , 2005, 144 , 309–316.  相似文献   
18.
The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543–2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic–Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic.  相似文献   
19.
The isolated adult teeth of titanosaurian sauropods from the Upper Cretaceous Bissekty Formation at Dzharakuduk, Uzbekistan, differ little in overall structure but show considerable variation in enamel sculpturing and wear patterns. The crown shape of unworn juvenile teeth ranges from lanceolate to conical. Most specimens have enamel texture resembling crumpled paper or completely smooth enamel. Longitudinal grooves along the mesial and distal edges are present on only a few tooth crowns and might be developed on both the labial and lingual sides. Among 252 worn tooth crowns there are eight variants of wear patterns, all possible combinations of 0–2 apical and 0–2 lateral wear facets. The most common is wear pattern A1L0 (one apical facet, no lateral facets; 62.7%). The next most common variant has two apical and no lateral facets (A2L0, 12.3%). These apical wear facets include the primary wear facets, which are produced by an opposing functional tooth, and secondary wear facets, which are produced by a replacing upper tooth coming into contact with the functional lower tooth at a late wear stage. The relative abundance of tooth crowns with two apical wear facets possibly suggests incipient development of a tooth battery in the Bissekty titanosaur.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号