首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1863篇
  免费   125篇
  国内免费   112篇
  2024年   7篇
  2023年   25篇
  2022年   47篇
  2021年   52篇
  2020年   47篇
  2019年   71篇
  2018年   50篇
  2017年   43篇
  2016年   59篇
  2015年   69篇
  2014年   86篇
  2013年   123篇
  2012年   97篇
  2011年   91篇
  2010年   71篇
  2009年   119篇
  2008年   115篇
  2007年   130篇
  2006年   143篇
  2005年   109篇
  2004年   89篇
  2003年   80篇
  2002年   54篇
  2001年   20篇
  2000年   46篇
  1999年   29篇
  1998年   19篇
  1997年   24篇
  1996年   15篇
  1995年   17篇
  1994年   8篇
  1993年   13篇
  1992年   9篇
  1991年   14篇
  1990年   9篇
  1989年   4篇
  1988年   7篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   10篇
  1983年   19篇
  1982年   15篇
  1981年   5篇
  1980年   6篇
  1979年   7篇
  1978年   2篇
  1977年   3篇
  1974年   2篇
  1967年   1篇
排序方式: 共有2100条查询结果,搜索用时 15 毫秒
51.
朱鹏飞  赵勇华  李晶媛  李树臣 《生物磁学》2013,(30):5851-5854,5877
目的:应用基因芯片技术筛选不同病毒载量的慢乙肝病人及健康人差异性表达的基因。方法:选用含有48000位点的人类表达谱cDNA基因芯片,筛选4例慢乙肝病人与2例健康人外周血差异性表达的基因。结果:与健康人相比,慢乙肝患者有838个差异表达的基因,其中高表达的基因有150个,低表达的基因有688个。结论:用表达谱基因芯片可有效地研究高、低病毒载量的慢乙肝患者间,以及它们与健康人之间基因表达的差异,通过进一步分析有望筛选出与慢性乙型肝炎相关的新基因靶点。  相似文献   
52.
双孢蘑菇子实体发育后期差异表达蛋白质分析   总被引:3,自引:2,他引:1  
为探讨双孢蘑菇子实体发育后期的蛋白质表达变化,对双孢蘑菇As2796子实体采收期、成熟期和开伞期的蛋白质组进行了双向电泳(2-DE)分析,发现了16个表达差异明显的蛋白质。通过质谱分析(MALDI-TOF/TOF MS)和数据库检索,有14个差异蛋白质获得鉴定。其中磷酸烯醇式丙酮酸水合酶与能量代谢相关,T-蛋白复合体1、蛋白酶体、5-甲基四氢三谷氨酸-同型半胱氨酸甲基转移酶、1-吡咯琳-5-羧酸脱氢酶、精氨酸酶与氨基酸或蛋白质代谢直接相关,而GTP结合蛋白则参与细胞的多种生命活动,在细胞的生长发育过程中起着重要的作用。另外7个为功能未知的蛋白质。  相似文献   
53.
Stem cells have been considered as possible therapeutic vehicles for different health related problems such as cardiovascular and neurodegenerative diseases and cancer. Secreted molecules are key mediators in cell–cell interactions and influence the cross talk with the surrounding tissues. There is strong evidence supporting that crucial cellular functions such as proliferation, differentiation, communication and migration are strictly regulated from the cell secretome. The investigation of stem cell secretome is accumulating continuously increasing interest given the potential use of these cells in regenerative medicine. The scope of the review is to report the main findings from the investigation of stem cell secretome by the use of contemporary proteomics methods and discuss the current status of research in the field. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   
54.
Hydrostatic pressure has a vital role in the biological adaptation of the piezophiles, organisms that live under high hydrostatic pressure. However, the mechanisms by which piezophiles are able to adapt their proteins to high hydrostatic pressure is not well understood. One proposed hypothesis is that the volume changes of unfolding (ΔVTot) for proteins from piezophiles is distinct from those of nonpiezophilic organisms. Since ΔVTot defines pressure dependence of stability, we performed a comprehensive computational analysis of this property for proteins from piezophilic and nonpiezophilic organisms. In addition, we experimentally measured the ΔVTot of acylphosphatases and thioredoxins belonging to piezophilic and nonpiezophilic organisms. Based on this analysis we concluded that there is no difference in ΔVTot for proteins from piezophilic and nonpiezophilic organisms. Finally, we put forward the hypothesis that increased concentrations of osmolytes can provide a systemic increase in pressure stability of proteins from piezophilic organisms and provide experimental thermodynamic evidence in support of this hypothesis.  相似文献   
55.
ABSTRACT

Proteome—the protein complement of a genome—has become the protein renaissance and a key research tool in the post-genomic era. The basic technology involves the routine usage of gel electrophoresis and spectrometry procedures for deciphering the primary protein sequence/structure as well as knowing certain unique post-translational modifications that a particular protein has undergone to perform a specific function in the cell. However, the recent advancements in protein analysis have ushered this science to provide deeper, bigger and more valuable perspectives regarding performance of subtle protein-protein interactions. Applications of this branch of molecular biology are as vast as the subject is and include clinical diagnostics, pharmaceutical and biotechnological industries. The 21st century hails the use of products, procedures and advancements of this science as finer touches required for the grooming of fast-paced technology.  相似文献   
56.
To understand the genotypic variation of citrus to mild salt stress, a proteomic approach has been carried out in parallel on two citrus genotypes (‘Cleopatra’ and ‘Willow leaf’ mandarins), which differ for Na+ and Cl accumulation, and their cognate autotetraploids (4×). Using two-dimensional electrophoresis approximately 910 protein spots were reproducibly detected in control and salt-stressed leaves of all genotypes. Among them, 44 protein spots showing significant variations at least in one genotype were subjected to mass spectrometry analysis for identification. Salt-responsive proteins were involved in several functions, including photosynthetic processes, ROS scavenging, stress defence, and signalling. Genotype factors affect the salt-responsive pattern, especially that of carbon metabolism. The no ion accumulator ‘Cleopatra’ mandarin genotype showed the highest number of salt-responsive proteins, and up-regulation of Calvin cycle-related proteins. Conversely the ion accumulator ‘Willow leaf’ mandarin showed high levels of several photorespiration-related enzymes. A common set of proteins (twelve spots) displayed higher levels in salt-stressed leaves of 2× and 4× ‘Cleopatra’ and 4× ‘Willow leaf’ mandarin. Interestingly, antioxidant enzymes and heat shock proteins showed higher constitutive levels in 4× ‘Cleopatra’ mandarin and 4× ‘Willow leaf’ mandarin compared with the cognate 2× genotype. This work provides for the first time information on the effect of 8 weeks of salt stress on citrus genotypes contrasting for ion accumulation and their cognate autotetraploids. Results underline that genetic factors have a predominant effect on the salt response, although a common stress response independent from genotype was also found.  相似文献   
57.
Protein ubiquitination plays an important role in the regulation of many cellular processes, including protein degradation, cell cycle regulation, apoptosis, and DNA repair. To study the ubiquitin proteome we have established an immunoaffinity purification method for the proteomic analysis of endogenously ubiquitinated protein complexes. A strong, specific enrichment of ubiquitinated factors was achieved using the FK2 antibody bound to protein G-beaded agarose, which recognizes monoubiquitinated and polyubiquitinated conjugates. Mass spectrometric analysis of two FK2 immunoprecipitations (IPs) resulted in the identification of 296 FK2-specific proteins in both experiments. The isolation of ubiquitinated and ubiquitination-related proteins was confirmed by pathway analyses (using Ingenuity Pathway Analysis and Gene Ontology-annotation enrichment). Additionally, comparing the proteins that specifically came down in the FK2 IP with databases of ubiquitinated proteins showed that a high percentage of proteins in our enriched fraction was indeed ubiquitinated. Finally, assessment of protein–protein interactions revealed that significantly more FK2-specific proteins were residing in protein complexes than in random protein sets. This method, which is capable of isolating both endogenously ubiquitinated proteins and their interacting proteins, can be widely used for unraveling ubiquitin-mediated protein regulation in various cell systems and tissues when comparing different cellular states.  相似文献   
58.
Hydrophobic interaction chromatography (HIC) is an important tool in the industrial purification of proteins from various sources. The HIC separation behavior of individual (or model) proteins has been widely researched by others. On the contrary, this study focused on the fractionation ability of HIC when it is challenged with whole proteomes. The impact of the nature of three different proteomes, that is, yeast, soybean, and Chinese hamster ovary cells, on HIC separation was investigated. In doing so, chromatography fractions obtained under standardized conditions were evaluated in terms of their overall hydrophobicity—as measured by fluorescence dye binding. This technique allowed for the calculation of an average protein surface hydrophobicity (S0) for each fraction; a unique correlation between S0 and the observed chromatographic behavior was established in each case. Following a similar strategy, the effect of three different ligands (polypropylene glycol, phenyl, and butyl) and two adsorbent particle sizes (65 and 100 µm) on the chromatographic behavior of the yeast proteome was evaluated. As expected, the superficial hydrophobicity of the proteins eluted is correlated with the salt concentration of its corresponding elution step. The findings reveled how—and in which extent—the type of ligand and the size of the beads actually influenced the fractionation of the complex biological mixture. Summarizing, the approach presented here can be instrumental to the study of the performance of chromatography adsorbents under conditions close to industrial practice and to the development of downstream processing strategies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
59.
60.
In the skeletal muscle, the ageing process is characterized by a loss of muscle mass and strength, coupled with a decline of mitochondrial function and a decrease of satellite cells. This profile is more pronounced in hindlimb than in forelimb muscles, both in humans and in rodents. Utilizing light and electron microscopy, myosin heavy chain isoform distribution, proteomic analysis by 2D‐DIGE, MALDI‐TOF MS and quantitative immunoblotting, this study analyzes the protein levels and the nuclear localization of specific molecules, which can contribute to a preferential muscle loss. Our results identify the molecular changes in the hindlimb (gastrocnemius) and forelimb (triceps) muscles during ageing in rats (3‐ and 22‐month‐old). Specifically, the oxidative metabolism contributes to tissue homeostasis in triceps, whereas respiratory chain disruption and oxidative‐stress‐induced damage imbalance the homeostasis in gastrocnemius muscle. High levels of dihydrolipoyllysine‐residue acetyltransferase (Dlat) and ATP synthase subunit alpha (Atp5a1) are detected in triceps and gastrocnemius, respectively. Interestingly, in triceps, both molecules are increased in the nucleus in aged rats and are associated to an increased protein acetylation and myoglobin availability. Furthermore, autophagy is retained in triceps whereas an enhanced fusion, decrement of mitophagy and of regenerative potential is observed in aged gastrocnemius muscle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号