首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   10篇
  国内免费   1篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2019年   9篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   6篇
  2014年   13篇
  2013年   9篇
  2012年   6篇
  2011年   9篇
  2010年   5篇
  2009年   13篇
  2008年   12篇
  2007年   5篇
  2006年   10篇
  2005年   13篇
  2004年   7篇
  2003年   9篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有199条查询结果,搜索用时 15 毫秒
141.
Electrospray ionization mass spectrometry (ESI MS) under nanospray conditions has been used to examine the effects of mutation at two key dimer interface residues, Gln (Q) 64 and Thr (T) 75, in Plasmodium falciparum triosephosphate isomerase. Both residues participate in an intricate network of intra- and intersubunit hydrogen bonds. The gas phase distributions of dimeric and monomeric protein species have been examined for the wild type enzyme (TWT) and three mutants, Q64N, Q64E, and T75S, under a wide range of collision energies (40–160 eV). The results established the order of dimer stability as TWT > T75S > Q64E ∼ Q64N. The mutational effects on dimer stability are in good agreement with the previously reported estimates, based on the concentration dependence of enzyme activity. Additional experiments in solution, using inhibition of activity by a synthetic dimer interface peptide, further support the broad agreement between gas phase and solution studies.  相似文献   
142.
Emiliania huxleyi (Lohm.) Hay et Miller is an important component of the phytoplankton in open ocean waters. The sensitivity of this cosmopolitan alga to natural levels of UVB radiation has never been tested. Since DNA is believed to be a major target of natural UVB radiation (UVBR: 280–315 nm) in living cells, experiments with E. huxleyi were performed using growth rate reduction and DNA damage as indicators of UVBR stress. Specific growth rate, cell volume, pigment content, and CPD (cyclobutane pyrimidine dimer) formation (a measure for DNA damage) were followed during and after prolonged exposure of a series of cultures to a range of UVBR levels. E. huxleyi was found to be very sensitive to UVBR: at a daily weighted UVBR dose of only 400 J·m−2 ·d−1 (BEDDNA300nm), growth was halted. At this UVBR level, both cell volume and contents of the major photosynthetic and photoprotective pigments had increased. The UVBR vulnerability of E. huxleyi cannot be explained by a high potential for cyclobutane thymine dimer formation (the most abundant CPD type) due to a high T content of nuclear DNA: the CG content of this E. huxleyi strain is high (68%) compared with other species. The high UVBR sensitivity may be related to the stage of the cell cycle during UVBR exposure, in combination with low repair capacity. It is concluded that E. huxleyi may experience UVBR stress through the formation of cyclobutane pyrimidine dimers, with subsequent low repair capacity and thereby arrest of the cell cycle.  相似文献   
143.
Chemical investigation on the roots of Chloranthus serratus (Chloranthaceae) afforded 11 terpenoids, including four lindenane-type sesquiterpenoid dimers (14), and seven labdane diterpenoids (511). The structures of these terpenoids were established by spectroscopic analysis (MS, 1H, and 13C NMR). Compounds 411 were isolated from C. serratus for the first time. The chemotaxonomic significance of the isolated compounds was summarized herein.  相似文献   
144.
A bacterial isolate, tentatively identified as Pseudomonas sp. strain TR3, was found to utilize the diaryl ester phenylbenzoate as sole source of carbon and energy. This strain has the ability to productively degrade phenylbenzoate and some substituted derivatives by a catabolic sequence which was characterized biochemically. The biodegradation of phenylbenzoate is thus initiated by an inducible esterase, effectively hydrolyzing the diaryl esters to produce stoichiometric amounts of two monoaromatic metabolites, identified as benzoate and phenol in the case of phenylbenzoate. The diaryl ester p-tolylbenzoate was hydrolyzed to yield benzoate and 4-methylphenol while 4-chlorophenylbenzoate gave rise to the production of benzoate and 4-chlorophenol. These monoaromatic catabolites were further degraded via the oxoadipate pathway.  相似文献   
145.
The response of the bipolar moss Sanionia uncinata (Hedw.) Loeske to ambient and enhanced UV‐B radiation was investigated at an Antarctic (Léonie Island, 67°35′ S, 68°20′ W) and an Arctic (Ny‐Alesund, 78°55′ N, 11°56′ E) site, which differed in ambient UV‐B radiation (UV‐BR: 280–320 nm) levels. The UV‐BR effects on DNA damage and photosynthesis were investigated in two types of outdoor experiments. First of all, sections of turf of S. uncinata were collected in an Arctic and Antarctic field site and exposed outdoors to ambient and enhanced UV‐BR for 2 d using UV‐B Mini‐lamps. During these experiments, chlorophyll a fluorescence, chlorophyll concentration and cyclobutyl pyrimidine dimer (CPD) formation were measured. Secondly, at the Antarctic site, a long‐term filter experiment was conducted to study the effect of ambient UV‐BR on growth and biomass production. Additionally, sections of moss turf collected at both the Antarctic and the Arctic site were exposed to UV‐BR in a growth chamber to study induction and repair of CPDs under controlled conditions. At the Antarctic site, a summer midday maximum of 2·1 W m?2 of UV‐BR did not significantly affect effective quantum yield (ΔF/Fm′) and the ratio of variable to maximal fluorescence (Fv/Fm). The same was found for samples of S. uncinata exposed at the Arctic site, where summer midday maxima of UV‐BR were about 50% lower than at the Antarctic site. Exposure to natural UV‐BR in summer did not increase CPD values significantly at both sites. Although the photosynthetic activity remained largely unaffected by UV‐B enhancement, DNA damage clearly increased as a result of UV‐B enhancement at both sites. However, DNA damage induced during the day by UV‐B enhancement was repaired overnight at both sites. Results from the long‐term filter experiment at the Antarctic site indicated that branching of S. uncinata was reduced by reduction of ambient summer levels of UV‐BR, whereas biomass production was not affected. Exposure of specimens collected from both sites to UV‐BR in a growth chamber indicated that Antarctic and Arctic S. uncinata did not differ in UV‐BR‐induced DNA damage. It was concluded that S. uncinata from both the Antarctic and the Arctic site is well adapted to ambient levels of UV‐BR.  相似文献   
146.
The sensitivity of different life stages of the eulittoral green alga Urospora penicilliformis (Roth) Aresch. to ultraviolet radiation (UVR) was examined in the laboratory. Gametophytic filaments and propagules (zoospores and gametes) released from filaments were separately exposed to different fluence of radiation treatments consisting of PAR (P = 400–700 nm), PAR + ultraviolet A (UVA) (PA, UVA = 320–400 nm), and PAR + UVA + ultraviolet B (UVB) (PAB, UVB = 280–320 nm). Photophysiological indices (ETRmax, Ek, and α) derived from rapid light curves were measured in controls, while photosynthetic efficiency and amount of DNA lesions in terms of cyclobutane pyrimidine dimers (CPDs) were measured after exposure to radiation treatments and after recovery in low PAR; pigments of propagules were quantified after exposure treatment only. The photosynthetic conversion efficiency (α) and photosynthetic capacity (rETRmax) were higher in gametophytes compared with the propagules. The propagules were slightly more sensitive to UVB‐induced DNA damage; however, both life stages of the eulittoral inhabiting turf alga were not severely affected by the negative impacts of UVR. Exposure to a maximum of 8 h UVR caused mild effects on the photochemical efficiency of PSII and induced minimal DNA lesions in both the gametophytes and propagules. Pigment concentrations were not significantly different between PAR‐exposed and PAR + UVR–exposed propagules. Our data showed that U. penicilliformis from the Antarctic is rather insensitive to the applied UVR. This amphi‐equatorial species possesses different protective mechanisms that can cope with high UVR in cold‐temperate waters of both hemispheres and in polar regions under conditions of increasing UVR as a consequence of further reduction of stratospheric ozone.  相似文献   
147.
Peptidoglycan recognition proteins (PGRPs) are important components of the innate immune system which provide the first line of defense against invading microbes. There are four members in the family of PGRPs in animals of which PGRP-S is a common domain. It is responsible for the binding to microbial cell wall molecules. In order to understand the mode of binding of PGRP-S to the components of the bacterial cell wall, the structure of the complex of camel PGRP-S (CPGRP-S) with heptanoic acid has been determined at 2.15 Å resolution. The structure determination showed the presence of four crystallographically independent protein molecules which are designated as A, B, C, and D. These four protein molecules associate in the form of two homodimers which are represented as A-B and C-D dimers. The association between molecules A and B gives rise to a shallow cleft on the surface at one end of the dimeric interface. One molecule of heptanoic acid is observed at this binding site in the A-B dimer. The association of C and D molecules results in the formation of a long zig-zag tunnel along with the C-D interface. In the cleft at the C-D interface, three molecules of hydrogen peroxide along with other non-water solvent molecules have been observed. The analysis of the several complexes of CPGRP-S with fatty acids and non-fatty acids such as peptidoglycan, lipopolysaccharide, and lipoteichoic acid shows that the fatty acids bind at the A-B site while non-fatty acids interact through C-D interface.  相似文献   
148.
The major heat shock proteins from Thiobacillus ferrooxidans were identified as DnaK and GroEL equivalents by Western blotting and analysis of the N-terminal amino acid sequence of spots isolated from dried 2-D polyacrylamide electrophoresis gels. The T. ferrooxidans chaperonins showed 70% and 80% identity with the Escherichia coli GroEL and DnaK, respectively. By using electrophoresis with a transverse pore gradient of cross-linked polyacrylamide and nondenaturing conditions followed by Western blotting, we found that the GroEL proteins from both bacteria formed a 14-mer, whereas E. coli DnaK protein existed partially as a dimer and the T. ferrooxidans DnaK-equivalent showed only a monomeric nature under our experimental conditions.  相似文献   
149.
150.
In this work, a glutamic acid linked paclitaxel (PTX) dimer (Glu-PTX2) with high PTX content of 88.9 wt% was designed and synthesized. Glu-PTX2 could self-assemble into nanoparticles (Glu-PTX2 NPs) in aqueous solution to increase the water solubility of PTX. Glu-PTX2 NPs were characterized by electron microscopy and dynamic light scattering, exhibiting spherical morphology and favorable structural stability in aqueous media. Glu-PTX2 NPs could be internalized by cancer cells as revealed by confocal laser scanning microscopy and exert potent cytotoxicity. It is envisaged that Glu-PTX2 NPs would be an alternative formulation for PTX, and such amino acid linked drug dimers could also be applied to other therapeutic agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号