首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7968篇
  免费   408篇
  国内免费   440篇
  8816篇
  2023年   82篇
  2022年   132篇
  2021年   180篇
  2020年   173篇
  2019年   225篇
  2018年   214篇
  2017年   170篇
  2016年   206篇
  2015年   246篇
  2014年   475篇
  2013年   651篇
  2012年   401篇
  2011年   476篇
  2010年   361篇
  2009年   401篇
  2008年   438篇
  2007年   433篇
  2006年   388篇
  2005年   366篇
  2004年   337篇
  2003年   296篇
  2002年   247篇
  2001年   175篇
  2000年   128篇
  1999年   137篇
  1998年   133篇
  1997年   111篇
  1996年   71篇
  1995年   70篇
  1994年   79篇
  1993年   64篇
  1992年   54篇
  1991年   59篇
  1990年   55篇
  1989年   45篇
  1988年   38篇
  1987年   33篇
  1986年   48篇
  1985年   66篇
  1984年   93篇
  1983年   73篇
  1982年   75篇
  1981年   52篇
  1980年   59篇
  1979年   46篇
  1978年   34篇
  1977年   24篇
  1976年   28篇
  1975年   24篇
  1974年   21篇
排序方式: 共有8816条查询结果,搜索用时 15 毫秒
241.
The induced synthesis of bioactive prostanoids downstream of cyclooxygenase-2 (COX-2) and prostaglandin H2 (PGH2) exerts a critical event in colorectal carcinogenesis. Here we demonstrate that APCMin/+ mice with genetic deletion of microsomal prostaglandin E synthase-1 (mPGES-1), which catalyses the terminal conversion of PGH2 into PGE2, surprisingly develop more and generally larger intestinal tumors than do mPGES-1 wild type littermates (mean number of tumors/intestine 80 vs. 38, p < 0.0005, mean tumor diameter 1.64 vs. 1.12 mm, p < 0.0005). No deviation regarding the expression of other PGE2 related enzymes (COX-1, COX-2, mPGES-2, cPGES, and 15-PGDH) or receptors (EP1-4) was obvious among the mPGES-1 deficient mice. PGE2 levels were suppressed in tumors of mPGES-1 deficient animals, but the concentrations of other PGH2 derived prostanoids were generally enhanced, being most prominent for TxA2 and PGD2. Thus, we hypothesise that a redirected synthesis towards other lipid mediators might (over)compensate for loss of mPGES-1/PGE2 during intestinal tumorigenesis. Nevertheless, our results question the suitability for mPGES-1 targeting therapy in the treatment or prevention of colorectal cancer.  相似文献   
242.
为了研究E cadherin基因启动子甲基化在胃癌发生及发展阶段中的作用 ,我们采用甲基化特异性PCR和免疫组化的方法对异型增生 (2 3例 )、早期胃癌 (2 0例 )和进展期胃癌 (2 0例 )石蜡标本进行启动子甲基化状态及蛋白表达的分析。结果表明E cadherin基因启动子在异型增生、早期胃癌和进展期胃癌中均有甲基化 ,其阳性率分别为78 3% ,80 %和 90 % ,经χ2 检验各病例组与正常组 (30 % )比较均有差异 (P <0 0 5 ) ,但各病例组间没有差异 (P >0 0 5 ) ;进展期胃癌E cadherin蛋白表达全部阴性 ,早期胃癌 70 %阴性 ,异型增生中无蛋白阴性 ,在早期胃癌和进展期胃癌 34例蛋白表达阴性的标本中 31例有启动子甲基化 (91 2 % ) ,蛋白表达与启动子甲基化呈明显负相关 (P <0 0 1)。表明E cadherin启动子甲基化是胃癌发生的早期事件 ,也是胃癌发生、进展的重要事件  相似文献   
243.
The specificity of T cells for syngeneic target cells is directed to both antigens and products of the major histocompatibility complex (MHC) on the target cell surface. This dual requirement is best accounted for by the altered-self hypothesis, which implies that the MHC products on a cell's surface are able to form complexes with many other proteins on the surface of the same cell. To account for the ability of MHC products to bind so many different cell surface antigens we propose that interactions in general among macromolecules on the surface of a membrane may be dramatically enhanced by a purely physical effect. This effect derives from the confinement of membrane macromolecules to an effective volume which is the product of membrane surface area times d, the distance over which the center of mass of the molecules can move in a vertical direction (perpendicular to the membrane surface). Because d is very small the effective concentrations of surface molecules are extremely high and their interactions are correspondingly enhanced.  相似文献   
244.
The activity of the Alzheimer's amyloid beta-peptide is a sensitive function of the peptide's sequence. Increased fibril elongation rate of the E22Q Dutch mutant of the Alzheimer's amyloid beta-peptide relative to that of the wild-type peptide has been observed. The increased activity has been attributed to a larger propensity for the formation of beta structure in the monomeric E22Q mutant peptide in solution relative to the WT peptide. That hypothesis is tested using four nanosecond timescale simulations of the WT and Dutch mutant forms of the Abeta(10-35)-peptide in aqueous solution. The simulation results indicate that the propensity for formation of beta-structure is no greater in the E22Q mutant peptide than in the WT peptide. A significant measure of "flickering" of helical structure in the central hydrophobic cluster region of both the WT and mutant peptides is observed. The simulation results argue against the hypothesis that the Dutch mutation leads to a higher probability of formation of beta-structure in the monomeric peptide in aqueous solution. We propose that the greater stability of the solvated WT peptide relative to the E22Q mutant peptide leads to decreased fibril elongation rate in the former. Stability difference is due to the differing charge state of the two peptides. The other proposal leads to the prediction that the fibril elongation rates for the WT and the mutant E22Q should be similar under acid conditions.  相似文献   
245.
Aims: This study estimated the incidence of non‐O157 verocytotoxigenic Escherichia coli (VTEC) in farm pasture soils and investigated the survival of non‐O157 VTEC in clay and sandy loam soils. Methods and Results: Twenty farms were tested over a 12‐month period by sample enrichment in tryptone soya broth plus vancomycin, followed by PCR screening for the presence of vt1 and vt2 genes. Of the 600 soil samples, 162 (27%), across all farms, were found to contain vt1 and/or vt2 genes. The enrichment cultures from the 162 PCR‐positive samples were plated onto Chromocult tryptone bile X‐glucuronide agar (TBX), presumptive VTEC colonies recovered, confirmed as VTEC by PCR and serotyped. Samples of the two predominant soil types in Ireland (clay and sandy) were homogenized, characterized in terms of pH, boron, cobalt, copper, potassium, magnesium, manganese, phosphorus, zinc and organic matter content, inoculated with washed suspensions of eight non‐O157:H7 soil isolates and six bovine faecal isolates and stored at 10°C for up to 201 days. Inoculum survival rates were determined at regular intervals by recovering and plating soil samples on TBX. All inoculated non‐O157 serotypes had highest D‐values in the sandy loam soil with D‐values ranging from 50·26 to 75·60 days. The corresponding range in clay loam soils was 31·60–48·25 days. Conclusions: This study shows that non‐O157 VTEC occur widely and frequently in pasture soils and can persist in such environments for several months, with considerable opportunity for recycling through farm environments, and cattle, with clear potential for subsequent transmission into the human food chain. Significance and Impact of the Study: This is the first such study of non‐O157 VTEC in farm soils and found that these VTEC are frequent and persistent contaminants in farm soils. In light of recent epidemiological data, non‐O157 VTEC should be seen as an emerging risk to be controlled within the food chain.  相似文献   
246.
The CDKN2A gene is a tumor suppressor that encodes the CDK4/6 inhibitor p16ink4a. Loss of this tumor suppressor contributes to the bypass of critical senescent signals and is associated with progression to malignant disease. However, the high-level expression of p16ink4a in tumors is associated with aggressive subtypes of disease, and in certain clinical settings elevated p16ink4a expression is an important determinant for disease prognosis and therapeutic response. These seemingly contradictory facets of p16ink4a expression have lead to confusion related to the meaning of this tumor suppression in tumor pathobiology. As reviewed here, the alternative expression of p16ink4a represents an ideal marker for considering RB-pathway function, tumor heterogeneity and novel means for directing therapy.  相似文献   
247.
Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together with their easy recovery makes them an attractive cell source for reprogramming. The reprogramming process as well as the resulting iPSC epigenome could potentially benefit from the unspecialized nature of AFSC. iPSC derived from AFSC also have potential in disease modeling, such as Down syndrome or β-thalassemia. Previous experiments involving AFSC reprogramming have largely relied on integrative vector transgene delivery and undefined serum-containing, feeder-dependent culture. Here, we describe non-integrative oriP/EBNA-1 episomal plasmid-based reprogramming of AFSC into iPSC and culture in fully chemically defined xeno-free conditions represented by vitronectin coating and E8 medium, a system that we found uniquely suited for this purpose. The derived AF-iPSC lines uniformly expressed a set of pluripotency markers Oct3/4, Nanog, Sox2, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 in a pattern typical for human primed PSC. Additionally, the cells formed teratomas, and were deemed pluripotent by PluriTest, a global expression microarray-based in-silico pluripotency assay. However, we found that the PluriTest scores were borderline, indicating a unique pluripotent signature in the defined condition. In the light of potential future clinical translation of iPSC technology, non-integrating reprogramming and chemically defined culture are more acceptable.  相似文献   
248.
Localization of gamma-glutamyl transpeptidase in lymphoid cells   总被引:1,自引:0,他引:1  
  相似文献   
249.
Histone lysine methylation by histone lysine methyltransferases (HKMTs) has been implicated in regulation of gene expression. While significant progress has been made to understand the roles and mechanisms of animal HKMT functions, only a few plant HKMTs are functionally characterized. To unravel histone substrate specificity, degree of methylation and catalytic activity, we analyzed Arabidopsis Trithorax‐like protein (ATX), Su (var)3‐9 h omologs protein (SUVH), Su(var)3‐9 related protein (SUVR), ATXR5, ATXR6, and E(Z) HKMTs of Arabidopsis, maize and rice through sequence and structure comparison. We show that ATXs may exhibit methyltransferase specificity toward histone 3 lysine 4 (H3K4) and might catalyse the trimethylation. Our analyses also indicate that most SUVH proteins of Arabidopsis may bind histone H3 lysine 9 (H3K9). We also predict that SUVH7, SUVH8, SUVR1, SUVR3, ZmSET20 and ZmSET22 catalyse monomethylation or dimethylation of H3K9. Except for SDG728, which may trimethylate H3K9, all SUVH paralogs in rice may catalyse monomethylation or dimethylation. ZmSET11, ZmSET31, SDG713, SDG715, and SDG726 proteins are predicted to be catalytically inactive because of an incomplete S‐adenosylmethionine (SAM) binding pocket and a post‐SET domain. E(Z) homologs can trimethylate H3K27 substrate, which is similar to the Enhancer of Zeste homolog 2 of humans. Our comparative sequence analyses reveal that ATXR5 and ATXR6 lack motifs/domains required for protein‐protein interaction and polycomb repressive complex 2 complex formation. We propose that subtle variations of key residues at substrate or SAM binding pocket, around the catalytic pocket, or presence of pre‐SET and post‐SET domains in HKMTs of the aforementioned plant species lead to variations in class‐specific HKMT functions and further determine their substrate specificity, the degree of methylation and catalytic activity.  相似文献   
250.
An ABC-type transporter in Escherichia coli that transports both l- and d-methionine, but not other natural amino acids, was identified. This system is the first functionally characterized member of a novel family of bacterial permeases within the ABC superfamily. This family was designated the methionine uptake transporter (MUT) family (TC #3.A.1.23). The proteins that comprise the transporters of this family were analyzed phylogenetically, revealing the probable existence of several sequence-divergent primordial paralogues, no more than two of which have been transmitted to any currently sequenced organism. In addition, MetJ, the pleiotropic methionine repressor protein, was shown to negatively control expression of the operon encoding the ABC-type methionine uptake system. The identification of MetJ binding sites (in gram-negative bacteria) or S-boxes (in gram-positive bacteria) in the promoter regions of several MUT transporter-encoding operons suggests that many MUT family members transport organic sulfur compounds. Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号