首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   950篇
  免费   134篇
  国内免费   44篇
  2024年   1篇
  2023年   10篇
  2022年   18篇
  2021年   13篇
  2020年   18篇
  2019年   39篇
  2018年   27篇
  2017年   17篇
  2016年   23篇
  2015年   42篇
  2014年   40篇
  2013年   89篇
  2012年   31篇
  2011年   48篇
  2010年   48篇
  2009年   48篇
  2008年   45篇
  2007年   48篇
  2006年   62篇
  2005年   49篇
  2004年   64篇
  2003年   48篇
  2002年   34篇
  2001年   29篇
  2000年   26篇
  1999年   24篇
  1998年   25篇
  1997年   24篇
  1996年   16篇
  1995年   22篇
  1994年   16篇
  1993年   18篇
  1992年   12篇
  1991年   6篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1974年   2篇
  1971年   1篇
排序方式: 共有1128条查询结果,搜索用时 68 毫秒
91.
Human IgG2 antibodies may exist in at least three distinct structural isomers due to disulfide shuffling within the upper hinge region. Antibody interactions with Fc gamma receptors and the complement component C1q contribute to immune effector functions. These interactions could be impacted by the accessibility and structure of the hinge region. To examine the role structural isomers may have on effector functions, a series of cysteine to serine mutations were made on a human IgG2 backbone. We observed structural homogeneity with these mutants and mapped the locations of their disulfide bonds. Importantly, there was no observed difference in binding to any of the Fc gamma receptors or C1q between the mutants and the wild‐type IgG2. However, differences were seen in the apparent binding affinity of these antibodies that were dependent on the selection of the secondary detection antibody used.  相似文献   
92.
In mammalian spermiogenesis, sperm mature during epididymal transit to get fertility. The pig sharing many physiological similarities with humans is considered a promising animal model in medicine. We examined the expression profiles of proteins from boar epididymal caput, corpus, and cauda sperm by two-dimensional gel electrophoresis and peptide mass fingerprinting. Our results indicated that protein disulfide isomerase-P5 (PDI-P5) human homolog was down-regulated from the epididymal corpus to cauda sperm, in contrast to the constant expression of protein disulfide isomerase A3 (PDIA3) human homolog. To examine the functions of PDIA3 and PDI-P5, we cloned and sequenced cDNAs of pig PDIA3 and PDI-P5 protein precursors. Each recombinant pig mature PDIA3 and PDI-P5 expressed in Escherichia coli showed thiol-dependent disulfide reductase activities in insulin turbidity assay. Although PDIA3 showed chaperone activity to promote oxidative refolding of reduced denatured lysozyme, PDI-P5 exhibited anti-chaperone activity to inhibit oxidative refolding of lysozyme at an equimolar ratio. SDS-PAGE and Western blotting analysis suggested that disulfide cross-linked and non-productively folded lysozyme was responsible for the anti-chaperone activity of PDI-P5. These results provide a molecular basis and insights into the physiological roles of PDIA3 and PDI-P5 in sperm maturation and fertilization.  相似文献   
93.
The promyelocytic leukemia protein (PML) forms nuclear bodies (NB) that can be redistributed by virus infection. In particular, lymphocytic choriomeningitis virus (LCMV) influences disruption of PML NB through the interaction of PML with the arenaviral Z protein. In a previous report, we have shown that the disulfide compound NSC20625 has antiviral and virucidal properties against arenaviruses, inducing unfolding and oligomerization of Z without affecting cellular RING-containing proteins such as the PML. Here, we further studied the effect of the zinc-finger-reactive disulfide NSC20625 on PML-Z interaction. In HepG2 cells infected with LCMV or transiently transfected with Z protein constructs, treatment with NSC20625 restored PML distribution from a diffuse-cytoplasmic pattern to punctate, discrete NB which appeared identical to NB found in control, uninfected cells. Similar results were obtained in cells transfected with a construct expressing a Z mutant in zinc-binding site 2 of the RING domain, confirming that this Z-PML interaction requires the integrity of only one zinc-binding site. Altogether, these results show that the compound NSC20625 suppressed Z-mediated PML NB disruption and may be used as a tool for designing novel antiviral strategies against arenavirus infection.  相似文献   
94.
Protein disulfide isomerase (PDI), the chief endoplasmic reticulum (ER) resident oxidoreductase chaperone that catalyzes maturation of disulfide-bond-containing proteins is involved in the pathogenesis of both Parkinson’s (PD) and Alzheimer’s (AD) diseases. S-nitrosylation of PDI cysteines due to nitrosative stress is associated with cytosolic debris accumulation and Lewy-body aggregates in PD and AD brains. We demonstrate that the polyphenolic phytochemicals curcumin and masoprocol can rescue PDI from becoming S-nitrosylated and maintain its catalytic function under conditions mimicking nitrosative stress by forming stable NOx adducts. Furthermore, both polyphenols intervene to prevent the formation of PDI-resistant polymeric misfolded protein forms that accumulate upon exposure to oxidative stress. Our study suggests that curcumin and masoprocol can serve as lead-candidate prophylactics for reactive oxygen species induced chaperone damage, protein misfolding and neurodegenerative disease; importantly, they can play a vital role in sustaining traffic along the ER’s secretory pathway by preserving functional integrity of PDI.  相似文献   
95.
Tertiary and quaternary structures of extracytoplasmic proteins containing more than one cysteine residue often require introduction of disulfide bonds. This process takes place in an oxidative environment, such as the periplasm of Gram-negative bacteria, and is catalyzed by Dsb (disulfide bond formation) proteins. Mutations in dsb genes influence the conformation and stability of many extracytoplasmic proteins. Thus, many pathogens become partially or fully attenuated due to improper folding of proteins that act as virulence factors. This review summarizes the current knowledge on Dsb proteins and their effect on the pathogenicity of Gram-negative bacteria. The potential application of Dsb proteins in biotechnology is also discussed.  相似文献   
96.
Disulfide bonds play an important role in protein stability and function. Here, we describe a general procedure for generating disulfide-linked dimers and multimers of proteins of known crystal structures. An algorithm was developed to predict sites in a protein compatible with intermolecular disulfide formation with neighboring molecules in the crystal lattice. A database analysis was carried out on 46 PDB coordinates to verify the general applicability of this algorithm to predict intermolecular disulfide linkages. On the basis of the predictions from this algorithm, mutants were constructed and characterized for a model protein, thioredoxin. Of the five mutants, as predicted, in solution four formed disulfide-linked dimers while one formed polymers. Thermal and chemical denaturation studies on these mutant thioredoxins showed that three of the four dimeric mutants had similar stability to wild-type thioredoxin while one had lower stability. Three of the mutant dimers crystallized readily (in four to seven days) in contrast to the wild-type protein, which is particularly difficult to crystallize and takes more than a month to form diffraction-quality crystals. In two of the three cases, the structure of the dimer was exactly as predicted by the algorithm, while in the third case the relative orientation of the monomers in the dimer was different from the predicted one. This methodology can be used to enhance protein crystallizability, modulate the oligomerization state and to produce linear chains or ordered three-dimensional protein arrays.  相似文献   
97.
Enzyme activities localized in the luminal compartment of the endoplasmic reticulum are integrated into the cellular metabolism by transmembrane fluxes of their substrates, products and/or cofactors. Most compounds involved are bulky, polar or even charged; hence, they cannot be expected to diffuse through lipid bilayers. Accordingly, transport processes investigated so far have been found protein-mediated. The selective and often rate-limiting transport processes greatly influence the activity, kinetic features and substrate specificity of the corresponding luminal enzymes. Therefore, the phenomenological characterization of endoplasmic reticulum transport contributes largely to the understanding of the metabolic functions of this organelle. Attempts to identify the transporter proteins have only been successful in a few cases, but recent development in molecular biology promises a better progress in this field.  相似文献   
98.
The native form of serpins (serine protease inhibitors) is a metastable conformation, which converts into a more stable form upon complex formation with a target protease. It has been suggested that movement of helix-F (hF) and the following loop connecting to strand 3 of beta-sheet A (thFs3A) is critical for such conformational change. Despite many speculations inferred from analysis of the serpin structure itself, direct experimental evidence for the mobilization of hF/thFs3A during the inhibition process is lacking. To probe the mechanistic role of hF and thFs3A during protease inhibition, a disulfide bond was engineered in alpha(1)-antitrypsin, which would lock the displacement of thFs3A from beta-sheet A. We measured the inhibitory activity of each disulfide-locked mutant and its heat stability against loop-sheet polymerization. Presence of a disulfide between thFs3A and s5A but not between thFs3A and s3A caused loss of the inhibitory activity, suggesting that displacement of hF/thFs3A from strand 5A but not from strand 3A is required during the inhibition process. While showing little influence on the inhibitory activity, the disulfide between thFs3A and s3A retarded loop-sheet polymerization significantly. This successful protein engineering of alpha(1)-antitrypsin is expected to be of value in clinical applications. Based on our current studies, we propose that the reactive-site loop of a serpin glides through between s5A and thFs3A for the full insertion into beta-sheet A while a substantial portion of the interactions between hF and s3A is kept intact.  相似文献   
99.
Lu CH  Chen YC  Yu CS  Hwang JK 《Proteins》2007,67(2):262-270
Disulfide bonds play an important role in stabilizing protein structure and regulating protein function. Therefore, the ability to infer disulfide connectivity from protein sequences will be valuable in structural modeling and functional analysis. However, to predict disulfide connectivity directly from sequences presents a challenge to computational biologists due to the nonlocal nature of disulfide bonds, i.e., the close spatial proximity of the cysteine pair that forms the disulfide bond does not necessarily imply the short sequence separation of the cysteine residues. Recently, Chen and Hwang (Proteins 2005;61:507-512) treated this problem as a multiple class classification by defining each distinct disulfide pattern as a class. They used multiple support vector machines based on a variety of sequence features to predict the disulfide patterns. Their results compare favorably with those in the literature for a benchmark dataset sharing less than 30% sequence identity. However, since the number of disulfide patterns grows rapidly when the number of disulfide bonds increases, their method performs unsatisfactorily for the cases of large number of disulfide bonds. In this work, we propose a novel method to represent disulfide connectivity in terms of cysteine pairs, instead of disulfide patterns. Since the number of bonding states of the cysteine pairs is independent of that of disulfide bonds, the problem of class explosion is avoided. The bonding states of the cysteine pairs are predicted using the support vector machines together with the genetic algorithm optimization for feature selection. The complete disulfide patterns are then determined from the connectivity matrices that are constructed from the predicted bonding states of the cysteine pairs. Our approach outperforms the current approaches in the literature.  相似文献   
100.
Helicobacter pylori infections are responsible for a sequence of molecular events which ultimately result in the development of gastric diseases. The pathogenesis of H. pylori has been studied extensively with strong focus on the identification of virulence factors. In contrast, the involvement of thiol:disulfide oxidoreductases in bacterial pathogenesis is less well understood. This paper provides a review of the current knowledge of H. pylori putative thiol:disulfide oxidoreductases, and their potential role in promoting virulence and colonization. Several bioinformatic analyses served to complete the information on these oxidoreductases of H. pylori.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号