首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   952篇
  免费   134篇
  国内免费   44篇
  2024年   2篇
  2023年   10篇
  2022年   19篇
  2021年   13篇
  2020年   18篇
  2019年   39篇
  2018年   27篇
  2017年   17篇
  2016年   23篇
  2015年   42篇
  2014年   40篇
  2013年   89篇
  2012年   31篇
  2011年   48篇
  2010年   48篇
  2009年   48篇
  2008年   45篇
  2007年   48篇
  2006年   62篇
  2005年   49篇
  2004年   64篇
  2003年   48篇
  2002年   34篇
  2001年   29篇
  2000年   26篇
  1999年   24篇
  1998年   25篇
  1997年   24篇
  1996年   16篇
  1995年   22篇
  1994年   16篇
  1993年   18篇
  1992年   12篇
  1991年   6篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1974年   2篇
  1971年   1篇
排序方式: 共有1130条查询结果,搜索用时 31 毫秒
71.
Human arylamine N-acetyltransferase 1 (NAT1) is a polymorphic phase II xenobiotic-metabolizing enzyme which catalyzes the biotransformation of primary aromatic amines, hydrazine drugs, and carcinogens. Structural and functional studies have shown that the NAT1 and factor XIII transglutaminase catalytic pockets are structurally related with the existence of a conserved catalytic triad (Cys-His-Asp). In addition, it has been reported that factor XIII transglutaminase activity could be regulated by nitric oxide (NO), in particular S-nitrosothiols (RSNO). We thus tested whether NAT1 could be a target of S-nitrosothiols. We show here that human NAT1 is reversibly inactivated by S-nitrosothiols such as SNAP (S-nitroso-N-acetyl-DL-penicillamine). A second-order rate constant for the inactivation of NAT1 by SNAP was determined (k(inact)=270M(-1)min(-1)) and shown to be in the same range of values reported for other enzymes. The inhibition of NAT1 by S-nitrosothiols was reversed by dithiothreitol and reduced glutathione, but not by ascorbate. As reported for some reactive cysteine-containing enzymes, our results suggest that inactivation of NAT1 by S-nitrosothiols is due to direct attack of the highly reactive cysteine residue in the enzyme active site on the sulfur of S-nitrosothiols to form a mixed disulfide between these NO-derived oxidants and NAT1. Finally, our findings suggest that, in addition to the polymorphic-dependent variation of NAT1 activity, NO-derived oxidants, in particular S-nitrosothiols, could also regulate NAT1 activity.  相似文献   
72.
The thermal stability of a cysteine-free alkaline protease (Alp) secreted by the eukaryote Aspergillus oryzae was improved both by the introduction of engineered twin disulfide bridges (Cys-69/Cys-101 and Cys-169/Cys-200), newly constructed as part of this study, and by the addition of calcium ions. We performed an extensive kinetic analysis of the increased thermal stability of the mutants as well as the role of calcium dependence. The thermodynamic activation parameters for irreversible thermal inactivation, the activation free energy (deltaG), the activation enthalpy (deltaH), and the activation entropy (deltaS) were determined from absolute reaction rate theory. The values of deltaH and deltaS were significantly and concomitantly increased as a result of introducing the twin disulfide bridges, for which the increase in the value of deltaH outweighed that of deltaS, resulting in significant increases in the value of deltaG. The enhancement of the thermal stability obtained by introducing the twin disulfide bridges is an example of the so-called low-temperature stabilization of enzymes. The stabilizing effect of calcium ions on wild-type Alp is similar to the results we obtained by introducing the engineered twin disulfide bridges.  相似文献   
73.
The nature of the dynamical coupling between a protein and its surrounding solvent is an important, yet open issue. Here we used temperature-dependent protein crystallography to study structural alterations that arise in the enzyme acetylcholinesterase upon X-ray irradiation at two temperatures: below and above the glass transition of the crystal solvent. A buried disulfide bond, a buried cysteine, and solvent exposed methionine residues show drastically increased radiation damage at 155 K, in comparison to 100 K. Additionally, the irradiation-induced unit cell volume increase is linear at 100 K, but not at 155 K, which is attributed to the increased solvent mobility at 155 K. Most importantly, we observed conformational changes in the catalytic triad at the active site at 155 K but not at 100 K. These changes lead to an inactive catalytic triad conformation and represent, therefore, the observation of radiation-inactivation of an enzyme at the atomic level. Our results show that at 155 K, the protein has acquired--at least locally--sufficient conformational flexibility to adapt to irradiation-induced alterations in the conformational energy landscape. The increased protein flexibility may be a direct consequence of the solvent glass transition, which expresses as dynamical changes in the enzyme's environment. Our results reveal the importance of protein and solvent dynamics in specific radiation damage to biological macromolecules, which in turn can serve as a tool to study protein flexibility and its relation to changes in a protein's environment.  相似文献   
74.
The N-carbamoyl- -amino acid amidohydrolase ( -carbamoylase) gene (dcb) from Agrobacterium tumefaciens AM 10 was cloned by polymerase chain reaction in plasmid pET28a and was overexpressed in Escherichia coli JM109 (DE3). However, almost 80% of the enzyme remained trapped in inclusion bodies. To facilitate the expression of the properly folded active enzyme, the chaperones GroEL/ES were coexpressed in plasmid pKY206. This resulted in a 43-fold increase in active enzyme production compared to the wild-type strain. The histidyl-tagged -carbamoylase was purified by a single step nickel-affinity chromatography to a specific activity of 9.5 U/mg protein.  相似文献   
75.
Glutathione (GSH), a general antioxidant and detoxifying compound, is the most abundant thiol-containing peptide in the central nervous system. It has been earlier shown to regulate the functions of glutamate receptors and to possess specific binding sites in both neurons and glial cells. The possible involvement of disulfide bonds, cysteinyl, arginyl, lysyl, glutamyl, and aspartyl residues in the binding of tritiated GSH to specific sites in pig cerebral cortical synaptic membranes was now studied after covalent modification of membrane proteins. Treatment of synaptic membranes with the thiol-modifying reagents 5,5-dithio-bis(2-nitrobenzoate) (DTNB) and 4,4-dithiodipyridine (DDP) dramatically enhanced the binding of [3H]GSH in a dose-dependent manner. Dithiothreitol (DTT) alone reduced the binding, but pretreatment of the membranes with DTT potentiated the enhancing effect of DTNB. On the other hand, when the modification with DTNB was followed by treatment with DTT, the enhancement by DTNB was completely reversed. N-ethylmaleimide, a thiol alkylating agent, and phenylisothiocyanate, a thiol- and amino-group modifying compound, reduced the binding, and their effects were additive. The guanidino-modifying agent phenylglyoxal reduced the binding but the carboxyl-modifying reagent 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide had no significant effect. The results indicate that cysteinyl side chains and disulfide bonds are essential in the binding of GSH to membrane proteins and that arginyl and lysyl side chains may also be directly involved in this process.  相似文献   
76.
Protein disulfide isomerase ERp57 is localized predominantly in the endoplasmic reticulum, but is also present in the cytosol and, according to preliminary evidence, in the nucleus of avian cells. Conclusive evidence of its nuclear localization and of its interaction with DNA in vivo in mammalian cells is provided here on the basis of DNA-protein cross-linking experiments performed with two different cross-linking agents on viable HeLa and 3T3 cells. Nuclear ERp57 could also be detected by immunofluorescence in HeLa cells, where it showed an intracellular distribution clearly different from that of an homologous protein, located exclusively in the endoplasmic reticulum. Mammalian ERp57 resembles the avian protein in its recognition of S/MAR-like DNA sequences and in its association with the nuclear matrix. It can be hypothesized that ERp57, which is known to associate with other proteins, in particular STAT3 and calreticulin, may contribute to their nuclear import, DNA binding, or other functions that they fulfil inside the nucleus.  相似文献   
77.
78.
The synthesis of oligodeoxyribonucleotides bearing mono- and diphosphoryldisulfide internucleotide links was optimized. Oligonucleotide 3"-phosphorothioates were modified using the thiophosphoryl–disulfide exchange with preactivated 5"-deoxy-5"-mercaptooligonucleotides or 5"-phosphorothioate derivatives both with and without a complementary template. The lack of template was shown to differently affect the product ratio (homo- and heterodimers) in the reactions of mono- and diphosphoryldisulfide-containing oligonucleotides. A replacement of one natural phosphodiester bond in 15–16-mer duplexes by a mono- or diphosphoryldisulfide group causes a slight thermal destabilization of the corresponding duplex. The disulfide recombination of the resulting compounds was studied.  相似文献   
79.
Attempts to purify the inhibitor of pectin methylesterase (PMEI) from the soluble extract of ripe apricot (Prunus armeniaca) fruit led to isolation of a protein (Pa-INH) similar to PMEI, but having invertase inhibitory activity against vacuolar invertase from tomato. The molecular charge, the native and SDS-PAGE molecular weights were similar to those of PMEI. Partial amino acid sequence indicated a high level of identity with invertase inhibitors and a significant identity with PMEI. Circular dichroism analysis showed a mainly -helix secondary structure for both the inhibitors and a higher thermostability of Pa-INH. Four Cys residues forming disulfide bridges in PMEI were conserved in Pa-INH. Similarly to PMEI, these residues were linked by disulfide bridges (first to second and third to fourth). The free Cys139 of PMEI is substituted by Ala in Pa-INH. The results reported in this study suggest a common structural arrangement of the two inhibitors.  相似文献   
80.
Prochymosin contains three disulfide bonds linking Cys45 to Cys50, Cys206 to Cys210, and Cys250 to Cys283. To analyze the disulfide bonding pattern between domain sequences in the recombinant prochymosin molecule solubilized from inclusion bodies by 8 M urea (designated as solubilized prochymosin), a simple peptide mapping method was established. This process consists of thiol alkylation, cleavage with cyanogen bromide, diagonal electrophoresis on polyacrylamide gel, and N-terminal sequencing. By using this procedure it was found that Cys45 and Cys50 located in the N-terminal domain are not mispaired with the cysteine residues, located in the C-terminal domain, in the solubilized wild-type prochymosin and its mutants. This result implies that Cys45 and Cys50, the partners of a native disulfide, are restricted in some ordered structures existing in inclusion bodies and remaining after solubilization. These native structural elements act as folding nuclei to initiate and facilitate correct refolding. The strategy of preserving the native-like structures including native disulfide in the solubilized inclusion bodies to enhance renaturation efficiency may be applicable to other recombinant proteins.Both authors contributed equally to this work  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号