首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   950篇
  免费   134篇
  国内免费   44篇
  2024年   1篇
  2023年   10篇
  2022年   18篇
  2021年   13篇
  2020年   18篇
  2019年   39篇
  2018年   27篇
  2017年   17篇
  2016年   23篇
  2015年   42篇
  2014年   40篇
  2013年   89篇
  2012年   31篇
  2011年   48篇
  2010年   48篇
  2009年   48篇
  2008年   45篇
  2007年   48篇
  2006年   62篇
  2005年   49篇
  2004年   64篇
  2003年   48篇
  2002年   34篇
  2001年   29篇
  2000年   26篇
  1999年   24篇
  1998年   25篇
  1997年   24篇
  1996年   16篇
  1995年   22篇
  1994年   16篇
  1993年   18篇
  1992年   12篇
  1991年   6篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1974年   2篇
  1971年   1篇
排序方式: 共有1128条查询结果,搜索用时 297 毫秒
111.
Protein crystallization continues to be a major bottleneck in X‐ray crystallography. Previous studies suggest that symmetric proteins, such as homodimers, might crystallize more readily than monomeric proteins or asymmetric complexes. Proteins that are naturally monomeric can be made homodimeric artificially. Our approach is to create homodimeric proteins by introducing single cysteines into the protein of interest, which are then oxidized to form a disulfide bond between the two monomers. By introducing the single cysteine at different sequence positions, one can produce a variety of synthetically dimerized versions of a protein, with each construct expected to exhibit its own crystallization behavior. In earlier work, we demonstrated the potential utility of the approach using T4 lysozyme as a model system. Here we report the successful application of the method to Thermotoga maritima CelA, a thermophilic endoglucanase enzyme with low sequence identity to proteins with structures previously reported in the Protein Data Bank. This protein had resisted crystallization in its natural monomeric form, despite a broad survey of crystallization conditions. The synthetic dimerization of the CelA mutant D188C yielded well‐diffracting crystals with molecules in a packing arrangement that would not have occurred with native, monomeric CelA. A 2.4 Å crystal structure was determined by single anomalous dispersion using a seleno‐methionine derivatized protein. The results support the notion that synthetic symmetrization can be a useful approach for enlarging the search space for crystallizing monomeric proteins or asymmetric complexes.  相似文献   
112.
Human Dickkopf‐1 (huDKK1), an inhibitor of the canonical Wnt‐signaling pathway that has been implicated in bone metabolism and other diseases, was expressed in engineered Chinese hamster ovary cells and purified. HuDKK1 is biologically active in a TCF/lef‐luciferase reporter gene assay and is able to bind LRP6 coreceptor. In SDS‐PAGE, huDKK1 exhibits molecular weights of 27–28 K and 30 K at ~ 1:9 ratio. By MALDI‐MS analysis, the observed molecular weights of 27.4K and 29.5K indicate that the low molecular weight form may contain O‐linked glycans while the high molecular weight form contains both N‐ and O‐linked glycans. LC‐MS/MS peptide mapping indicates that ~ 92% of huDKK1 is glycosylated at Asn225 with three N‐linked glycans composed of two biantennary forms with 1 and 2 sialic acid (23% and 60%, respectively), and one triantennary structure with 2 sialic acids (9%). HuDKK1 contains two O‐linked glycans, GalNAc (sialic acid)‐Gal‐sialic acid (65%) and GalNAc‐Gal[sialic acid] (30%), attached at Ser 30 as confirmed by β‐elimination and targeted LC‐MS/MS. The 10 intramolecular disulfide bonds at the N‐ and C‐terminal cysteine‐rich domains were elucidated by analyses including multiple proteolytic digestions, isolation and characterization of disulfide‐containing peptides, and secondary digestion and characterization of selected disulfide‐containing peptides. The five disulfide bonds within the huDKK1 N‐terminal domain are unique to the DKK family proteins; there are no exact matches in disulfide positioning when compared to other known disulfide clusters. The five disulfide bonds assigned in the C‐terminal domain show the expected homology with those found in colipase and other reported disulfide clusters.  相似文献   
113.
The mechanosensitive channel of large conductance (MscL) from E. coli serves as an emergency release valve allowing the cell to survive acute osmotic downshock. It is one of the best studied mechanosensitive channels and serves as a paradigm for how a protein can sense and respond to membrane tension. Two MscL crystal structures of the orthologs M. tuberculosis and S. aureus have been solved showing pentameric and tetrameric structures, respectively. Several studies followed to understand whether the discrepancy in their stoichiometry was a species difference or a consequence of the protein manipulation for crystallization. Two independent studies now agree that the full-length S. aureus MscL is actually a pentamer, not tetramer. While detergents appear to play a role in modifying the oligomeric state of the protein, a cytoplasmic helical bundle has also been implicated. Here, we evaluate the role of the C-terminal region of S. aureus MscL in the oligomerization of the channel in native membranes by using an in vivo disulfide-trapping technique. We find that the oligomeric state of S. aureus MscLs with different C-terminal truncations, including the one used to obtain the tetrameric S. aureus MscL crystal structure, are pentamers in vivo. Thus, the C-terminal domain of the S. aureus protein only plays a critical role in the oligomeric state of the SaMscL protein when it is solubilized in detergent.  相似文献   
114.
The oxidative folding of small, cysteine‐rich peptides to selectively achieve the native disulfide bond connectivities is critical for discovery and structure‐function studies of many bioactive peptides. As the propensity to acquire the native conformation greatly depends on the peptide sequence, numerous empirical oxidation methods are employed. The context‐dependent optimization of these methods has thus far precluded a generalized oxidative folding protocol, in particular for peptides containing more than two disulfides. Herein, we compare the efficacy of optimized solution‐phase and polymer‐supported oxidation methods using three disulfide‐bridged conotoxins, namely µ‐SIIIA, µ‐KIIIA and ω‐GVIA. The use of diselenide bridges as proxies for disulfide bridges is also evaluated. We propose the ClearOx‐assisted oxidation of selenopeptides as a fairly generalized oxidative folding protocol. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
115.
Redox conditions change in events such as immune and platelet activation, and during viral infection, but the biochemical consequences are not well characterized. There is evidence that some disulfide bonds in membrane proteins are labile while others that are probably structurally important are not exposed at the protein surface. We have developed a proteomic/mass spectrometry method to screen for and identify non-structural, redox-labile disulfide bonds in leucocyte cell-surface proteins. These labile disulfide bonds are common, with several classes of proteins being identified and around 30 membrane proteins regularly identified under different reducing conditions including using enzymes such as thioredoxin. The proteins identified include integrins, receptors, transporters and cell-cell recognition proteins. In many cases, at least one cysteine residue was identified by mass spectrometry as being modified by the reduction process. In some cases, functional changes are predicted (e.g. in integrins and cytokine receptors) but the scale of molecular changes in membrane proteins observed suggests that widespread effects are likely on many different types of proteins including enzymes, adhesion proteins and transporters. The results imply that membrane protein activity is being modulated by a 'redox regulator' mechanism.  相似文献   
116.
A solid-phase approach was used to prepare 20 cystine amide derivatives with disulfide bond formation resulting from an intra-site reaction between neighbouring cysteine residues. Library members were screened as potential organogelators in a range of solvent mixtures and resulted in the identification of a potent gelator able to rigidify water/DMSO mixtures at concentrations as low as 1.3 mM.  相似文献   
117.
Cadmium (Cd) homeostasis and detoxification in sunflower (Helianthus annuus L.) cells differing in Cd sensitivity/tolerance were studied by analyzing the glutathione-mediated antioxidant mechanism vis-à-vis phytochelatin biosynthesis in vitro. Calluses exposed to Cd-shock/-acclimatization (150μM) were assayed for oxidative stress, reduced glutathione (GSH), glutathione disulfide (GSSG), phytochelatins (PCs) and reactive oxygen species (ROS). Although Cd did not induce any oxidative stress in Cd-tolerant callus (TCd), it generated oxidative stress in Cd-shock callus (SCd) both in terms of lipid peroxidation and protein oxidation. GSH/GSSG ratio remained similar to control values in the cadmium-acclimatized calluses. However, after acute treatment, there was a decline in both GSH and GSSG levels in SCd with concomitant reduction in the GSH/GSSG ratio. Analysis of PCs was performed using HPLC and mass spectrometry methods. PC concentration in TCd were approximately twice those that in SCd, showing in both cases a 1:2:1 relative proportion for PC n = 2 (PC2): PC n = 3 (PC3): PC n = 4 (PC4). Calluses growing in the presence of Cd developed an increased resistance to paraquat oxidative stress generation. These results indicated that PCs synthesis was an important mechanism for Cd detoxification in sunflower calluses, but the capacity to grow in the presence of Cd is related to the tissues ability to maintain high intracellular levels of GSH.  相似文献   
118.
Erv2p is a small, dimeric FAD-dependent sulfhydryl oxidase that generates disulfide bonds in the lumen of the endoplasmic reticulum. Mutagenic and structural studies suggest that Erv2p uses an internal thiol-transfer relay between the FAD-proximal active site cysteine pair (Cys121-Cys124) and a second cysteine pair (Cys176-Cys178) located in a flexible, substrate-accessible C-terminal tail of the adjacent dimer subunit. Here, we demonstrate that Cys176 and Cys178 are the only amino acids in the tail region required for disulfide transfer and that their relative positioning within the tail peptide is important for activity. However, intragenic suppressor mutations could be isolated that bypass the requirement for Cys176 and Cys178. These mutants were found to disrupt Erv2p dimerization and to increase the activity of Erv2p for thiol substrates such as glutathione. We propose that the two Erv2p subunits act together to direct the disulfide transfer to specific substrates. One subunit provides the catalytic domain composed of the active site cysteine residues and the FAD cofactor, while the second subunit appears to have two functions: it facilitates disulfide transfer to substrates via the tail cysteine residues, while simultaneously shielding the active site cysteine residues from non-specific reactions.  相似文献   
119.
Diallyl disulfide (DADS), an oil soluble constituent of garlic (Allium sativum), has been reported to cause antimutagentic and anticarcinogenic effects in vitro and in vivo by modulating phases I and II enzyme activities. In recent years, several studies suggested that the chemopreventive effects of DADS can also be attributed to induction of cell cycle arrest and apoptosis in cancer cells. In the present study, we reported that DADS-induced cell cycle arrest at G2/M and apoptosis in human A549 lung cancer cells in a time- and dose-dependent manner. Additionally, a significant increase of intracellular reactive oxygen species (ROS) was induced in A549 cells less than 0.5 h after DADS treatment, indicating that ROS may be an early event in DADS-modulated apoptosis. Treatment of A549 cells with N-acetyl cysteine (NAC) completely abrogated DADS-induced cell cycle arrest and apoptosis. The result indicated that oxidative stress modulates cell proliferation and cell death induced by DADS.  相似文献   
120.
Three different classes of thiol-oxidoreductases that facilitate the formation of protein disulfide bonds have been identified. They are the Ero1 and SOX/ALR family members in eukaryotic cells, and the DsbB family members in prokaryotic cells. These enzymes transfer oxidizing potential to the proteins PDI or DsbA, which are responsible for directly introducing disulfide bonds into substrate proteins during oxidative protein folding in eukaryotes and prokaryotes, respectively. A comparison of the recent X-ray crystal structure of Ero1 with the previously solved structure of the SOX/ALR family member Erv2 reveals that, despite a lack of primary sequence homology between Ero1 and Erv2, the core catalytic domains of these two proteins share a remarkable structural similarity. Our search of the DsbB protein sequence for features found in the Ero1 and Erv2 structures leads us to propose that, in a fascinating example of structural convergence, the catalytic core of this integral membrane protein may resemble the soluble catalytic domain of Ero1 and Erv2. Our analysis of DsbB also identified two new groups of DsbB proteins that, based on sequence homology, may also possess a catalytic core similar in structure to the catalytic domains of Ero1 and Erv2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号