首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   667篇
  免费   142篇
  国内免费   5篇
  814篇
  2024年   7篇
  2023年   22篇
  2022年   35篇
  2021年   49篇
  2020年   60篇
  2019年   58篇
  2018年   42篇
  2017年   36篇
  2016年   40篇
  2015年   32篇
  2014年   62篇
  2013年   59篇
  2012年   34篇
  2011年   47篇
  2010年   24篇
  2009年   37篇
  2008年   20篇
  2007年   33篇
  2006年   26篇
  2005年   18篇
  2004年   15篇
  2003年   8篇
  2002年   16篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1994年   6篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1981年   2篇
排序方式: 共有814条查询结果,搜索用时 0 毫秒
81.
Diabetic neuropathy is a major complication of diabetes that results in the progressive deterioration of the sensory nervous system. Mitochondrial dysfunction has been proposed to play an important role in the pathogenesis of the neurodegeneration observed in diabetic neuropathy. Our recent work has shown that mitochondrial dysfunction occurs in dorsal root ganglia (DRG) sensory neurons in streptozotocin (STZ) induced diabetic rodents. In neurons, the nutrient excess associated with prolonged diabetes may trigger a switching off of AMP kinase (AMPK) and/or silent information regulator T1 (SIRT1) signaling leading to impaired peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α) expression/activity and diminished mitochondrial activity. This review briefly summarizes the alterations of mitochondrial function and proteome in sensory neurons of STZ-diabetic rodents. We also discuss the possible involvement of AMPK/SIRT/PGC-1α pathway in other diabetic models and different tissues affected by diabetes.  相似文献   
82.
Amaranthus spinosus Linn. (Amaranthaceae), commonly known as “Mulluharivesoppu” in Kannada, is used in the Indian traditional system of medicine for the treatment of diabetes. The present study deals with the scientific evaluation of alpha amylase and the antioxidant potential of methanol extract of A. spinosus (MEAS). The aim of this study was to investigate in vitro alpha-amylase enzyme inhibition by CNPG3 (2-chloro-4-nitrophenol α-d-maltotrioside) and in vivo antioxidant potential of malondialdehyde (MDA), glutathione (GSH), catalase (CAT) and total thiols (TT) in alloxan-induced diabetic rats of a methanolic extract of A. spinosus. Blood sugar was also determined in MEAS-treated alloxan-induced diabetic rats. MEAS showed significant inhibition of alpha-amylase activity and IC50 46.02 μg/ml. Oral administration of MEAS (200 and 400 mg/kg) for 15 days showed significant reduction in the elevated blood glucose, MDA and restores GSH, CAT and TT levels as compared with a diabetic control. The present study provides evidence that the methanolic extract of A. spinosus has potent alpha amylase, anti-diabetic and antioxidant activities.  相似文献   
83.
张少峰  谢胜  甘伟  罗茂华  李云飞 《生物磁学》2011,(12):2317-2320
目的:检测DCP逼尿肌中SCF表达水平,探讨SCF基因表达与DCP关系及其发病机制。方法:按1:2病例对照研究,采用链脲佐菌素(STZ)及尿动力学检测成功建立DCP豚鼠20只为实验组,并以同质豚鼠40为对照组,应用RT-PCR和Western-blotting方法分别检测各组膀胱逼尿肌中SCF mRNA、SCF蛋白的表达。结果:DCP豚鼠组织中SCF mRNA表达与正常对照组比较无明显显著差异(P〉0.05),DCP豚鼠组织中SCF蛋白表达明显低于正常对照组(P〈0.01)。结论:DCP组织中SCF蛋白表达减少与SCF基因翻译水平异常有关,因此高血糖环境下SCF基因表达异常可能是DCP的发病机制之一。  相似文献   
84.
CCN-2, also known as connective tissue growth factor (CCN-2/CTGF) is a cysteine rich, extracellular matrix protein that acts as a pro-fibrotic cytokine in tissues in many diseases, including in diabetic nephropathy. We have published that soluble advanced glycation end products (AGEs), that are present in increased amounts in diabetes, induce CCN-2. However in vivo AGEs are known to be heavily tissue bound and whether matrix bound AGEs regulate CCN-2 has not been investigated. In this study we determined in human renal mesangial cells if CCN-2 is induced by matrix associated AGEs and if CCN-2 may then secondarily mediate effects of matrix AGEs on extracellular matrix expansion. Data generated show that CCN-2 mRNA and protein expression are induced by matrix bound AGEs, and in contrast, this was not the case for TGF-β1 mRNA regulation. Using CCN-2 adenoviral anti-sense it was found that CCN-2 mediated the up-regulation of fibronectin and the tissue inhibitor of matrix metalloproteinase, TIMP-1, that was caused by matrix bound AGEs. In conclusion, CCN-2 is induced by non-enzymatically glycated matrix and it mediates downstream fibronectin and TIMP-1 increases, thus through this mechanism potentially contributing to ECM accumulation in the renal glomerulus in diabetes.  相似文献   
85.
86.
Diabetic neuropathic pain (DNP) is highly common in diabetes patients. P2X receptors play critical roles in pain sensitization. We previously showed that elevated P2X3 expression in dorsal root ganglion (DRG) contributes to DNP. However, the role of other P2X receptors in DNP is unclear. Here, we established the DNP model using a single high-dose streptozotocin (STZ) injection and investigated the expression of P2X genes in the DRG. Our data revealed elevated P2X2, P2X4, and P2X7 mRNA levels in DRG of DNP rats. The protein levels of P2X4 and P2X7 in DNP rats increased, but the P2X2 did not change significantly. To study the role of P2X4 and P2X7 in diabetes-induced hyperalgesia, we treated the DNP rats with TNP-ATP (2’,3’-O-(2,4,6-trinitrophenyl)-adenosine 5’-triphosphate), a nonspecific P2X1–7 antagonist, and found that TNP-ATP alleviated thermal hyperalgesia in DNP rats. 2 Hz electroacupuncture is analgesic against DNP and could downregulate P2X4 and P2X7 expression in DRG. Our findings indicate that P2X4 and P2X7 in L4–L6 DRGs contribute to diabetes-induced hyperalgesia, and that EA reduces thermal hyperalgesia and the expression of P2X4 and P2X7.  相似文献   
87.
Diabetic retinopathy (DR) is the prevalent microvascular complication of diabetes mellitus (DM), and it may lead to permanent blindness. The previous publication has indicated that both inflammatory response and oxidative stress are critical factors involved in DR progression, however, the accurate regulatory mechanism remains to be revealed. Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), a member of the protein tyrosine phosphatase family, was reported to play a role in diabetic nephropathy, whereas its function in DR was unknown and required further exploration. The level of phosphorylated, not the total, SHP2 increased in the retinas of rats with streptozotocin injection-induced DM. Further, the intravitreal injection of SHP2 shRNA lentivirus alleviated retinal pathological changes, and inhibited inflammatory response and oxidative stress, which were accompanied with Yes-associated protein 1 (YAP1) deactivation in DR rats. Additional co-immunoprecipitation results confirmed the interaction of SHP2 and YAP1. Collectively, our data preliminarily show that DR amelioration-induced by SHP2 inhibition in rats may attribute to the deactivation of YAP1 pathway.  相似文献   
88.
骨形成蛋白-9(BMP-9)是从胚胎鼠的肝脏c DNA文库中克隆得到的新型细胞因子,属于转化生长因子β超家族的成员,由肝脏非实质细胞合成分泌,在体内以类激素的形式发挥广泛的生物学作用。BMP-9不仅具有强烈的骨诱导活性,促进成骨细胞分化,还可通过调控糖代谢过程中关键酶的表达、促进胰岛素合成及分泌、增加胰岛素敏感性等方式调节体内葡萄糖平衡。本文主要对BMP-9与骨代谢及糖代谢的关系进行综述,为深入认识糖尿病、代谢性骨病及糖尿病性骨质疏松的发生机理提供理论依据,为糖尿病和骨骼疾病的防治提供新的思路。  相似文献   
89.
Aldose reductase (AR) has been implicated as a major contributor to the pathogenesis of diabetic cataracts. AR activation generates osmotic and oxidative stresses via the polyol pathway and induces cell death signals. Antioxidant protein 2 (AOP2) protects cells from oxidative stress. We investigated the effect of AR overexpression on polyol accumulation and on hyperglycemic oxidative stress and osmotic stress, as well as the effects of these stresses on human lens epithelial cell (hLEC) survival. hLECs overexpressing the AR became apoptotic during hyperglycemia and showed elevated levels of intracellular polyols. Glutathione and AOP2 levels were significantly decreased in these cells. Interestingly, supply of AOP2 and/or the AR inhibitor fidarestat protected the cells against hyperglycemia-induced death. Overexpression of AR increased osmotic and oxidative stresses, resulting in increased apoptosis in hLECs. Because AOP2 protects hyperglycemia-induced hLEC apoptosis, this molecule may have the potential to prevent hyperglycemia-mediated complications in diabetes.  相似文献   
90.
Dan Q  Wong R  Chung SK  Chung SS  Lam KS 《Life sciences》2004,76(4):445-459
We investigated for the interaction between the polyol pathway and enhanced non-enzymatic glycation, both implicated in the pathogenesis of diabetic atherosclerosis, in the activation of aortic smooth muscle cell (SMC) function. Mouse aortas and primary cultures of SMCs from wildtype (WT) mice and transgenic (TG) mice expressing human aldose reductase (AR) were studied regarding changes in AR activity, and SMC gene activation, migration and monocyte adhesion, in response to advanced glycation end-product modified BSA (AGE-BSA). Results showed that AGE-BSA increased AR activity in both WT and TG aortas, with greater increments (p < 0.05) in TG aortas which, basally, had elevated AR activity (2.8 fold of WT). These increments were attenuated by zopolrestat, an AR inhibitor. Similar AGE-induced increments in AR activity were observed in primary cultures of aortic SMCs from WT and TG mice (60% and 100%, respectively, P < 0.01). Such increments were accompanied by increases in intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1) mRNA levels (both P < 0.05), activation of membrane-associated PKC-beta1 (P < 0.05) as well as increased SMC migration and Tamm-Horsfall protein (THP)-1 monocyte adhesion to SMCs (both p < 0.01), with all changes being significantly greater in TG SMCs (P < 0.05) and suppressible by either zopolrestat or transfection with an AR antisense oligonucleotide. Our findings suggest that the effects of AGEs on SMC activation, migration and monocyte adhesion are mediated partly through the polyol pathway and, possibly, PKC activation. The greater AGE-induced changes in the TG SMCs have provided further support for the dependency of such changes on polyol pathway hyperactivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号