首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6058篇
  免费   378篇
  国内免费   181篇
  2024年   12篇
  2023年   46篇
  2022年   66篇
  2021年   83篇
  2020年   140篇
  2019年   179篇
  2018年   194篇
  2017年   143篇
  2016年   147篇
  2015年   184篇
  2014年   289篇
  2013年   504篇
  2012年   217篇
  2011年   356篇
  2010年   166篇
  2009年   314篇
  2008年   376篇
  2007年   399篇
  2006年   368篇
  2005年   326篇
  2004年   338篇
  2003年   275篇
  2002年   226篇
  2001年   146篇
  2000年   142篇
  1999年   131篇
  1998年   151篇
  1997年   107篇
  1996年   109篇
  1995年   107篇
  1994年   68篇
  1993年   42篇
  1992年   42篇
  1991年   24篇
  1990年   23篇
  1989年   10篇
  1988年   13篇
  1987年   8篇
  1986年   6篇
  1985年   12篇
  1984年   26篇
  1983年   14篇
  1982年   18篇
  1981年   10篇
  1980年   14篇
  1979年   12篇
  1978年   6篇
  1976年   5篇
  1975年   6篇
  1974年   8篇
排序方式: 共有6617条查询结果,搜索用时 15 毫秒
81.
We present ab-initio periodic Hartree–Fock calculations (crystal program) of small molecules on TiO2 and MgO. The adsorption of the molecules may be molecular or dissociative. This depends on their acid and basic properties in the gas phase. For the molecular adsorption, the molecules are adsorbed as bases on Ti(+IV) sites, the adsorption energies correlate with the proton affinities. The dissociations on the surface correlate with the gas phase cleavages: thus, the dissociation of MeOH leads to a preferential basic cleavage (the fragment HO– is adsorbed on a Ti+4 ion and the fragment Me+ is adsorbed on a O2– ion of the oxide). The opposite result is obtained with MeSH. Another important factor is the adsorbate–adsorbate interaction: favorable cases are a sequence of H-bonds for the hydroxyl groups resulting from the water dissociation and the mode of adsorption for the ammonium ions. Lateral interactions also force the adsorbed CO2 molecules to bend over the surface so that their mutual orientation resembles the geometry of the CO2 dimer. With respect to water adsorption, MgO appears to be a basic oxide. As experimentally observed, NH3 adsorbs preferentially on TiO2 and CO2 on MgO. However, this difference of reactivity should not be expressed in terms of acid vs. basic behaviour but in terms of hard and soft acidity. The MgO surface is a 'soft' acidic surface that reacts preferentially with the soft base, CO2.  相似文献   
82.
83.
Abstract: Given the extreme lability and the facile inactivation of the messenger nitric oxide (NO) by many reactive biochemical species, it has been suggested that some intermediate compounds, for example, S -nitrosothiols, may act to stabilize NO and at the same time to preserve its biological activity. To test this hypothesis, we investigated if the S -nitrosothiol of glutathione, which is the predominant low molecular weight thiol in CNS, is present in the rat brain. The HPLC analysis of cerebellar extract from [35S]cysteine-prelabeled slices suggested that S -nitrosoglutathione (GSNO) was indeed present in rat brain. To detect endogenous GSNO, a methodology based on liquid chromatography-mass spectrometry was developed. Besides an unequivocal identification of the endogenous GSNO, this method also permitted its precise quantification using 15N-labeled GSNO ([15N]-GSNO) as internal standard. GSNO level in adult cerebellum amounts to 15.4 ± 1.4 pmol/mg of protein. This is the first direct demonstration of the presence of endogenous GSNO in CNS. The packaging of NO in the form of GSNO might serve to facilitate its transport, prolong its life, and target its delivery to specific effectors.  相似文献   
84.
Abstract: Nitrogen oxides, such as nitric oxide, have been shown to regulate neuronal functions, including neurotransmitter release. We investigated the effect of S-nitroso-l -cysteine (SNC) on noradrenaline (NA) release in the rat hippocampus in vivo and in vitro. SNC stimulated [3H]NA release from prelabeled hippocampal slices in a dose-dependent manner. SNC stimulated endogenous NA release within 30 min to almost five times the basal level in vivo (microdialysis in freely moving rats). In a Na+-containing Tyrode's buffer, SNC-stimulated [3H]NA release was inhibited 30% by the coaddition of l -leucine. In the Na+-free, choline-containing buffer, SNC-stimulated [3H]NA release, which was similar to that in the Na+-containing buffer, was inhibited markedly by l -leucine, l -alanine, l -methionine, l -phenylalanine, and l -tyrosine. The effects of the other amino acids examined were smaller or very limited. The effect of l -leucine was stronger than that of d -leucine. A specific inhibitor of the L-type amino acid transporter, 2-aminobicyclo[2.2.1]-heptane-2-carboxylate (BCH), inhibited the effects of SNC on [3H]NA release in the Na+-free buffer. Uptake of l -[3H]leucine into the slices in the Na+-free buffer was inhibited by SNC, BCH, and l -phenylalanine, but not by l -lysine. The effect of SNC on cyclic GMP accumulation was not inhibited by l -leucine, although SNC stimulated cyclic GMP accumulation at concentrations up to 25 µM, much less than the concentration that stimulates NA release. These findings suggest that SNC is incorporated into rat hippocampus via the L-type-like amino acid transporter, at least in Na+-free conditions, and that SNC stimulates NA release in vivo and in vitro in a cyclic GMP-independent manner.  相似文献   
85.
Novel, non-arginine based compounds have been identified as potent inhibitors of nitric oxide synthase (NOS). Members of the isothiourea and mercapto-alkylguanidine classes have generated much interest, as some members of these classes show selectivity towards the inducible isoform of NOS (iNOS), which plays a role in inflammation and shock. Here we compared the effect of a number of these compounds as well as L-arginine based NOS inhibitor reference compounds on macrophage-derived and liver arginase and macrophage iNOS activities. From the nonarginine based NOS inhibitors studied only S-aminoethyl-isothiourea (AETU) caused a slight inhibition of arginase activity. This inhibition was kinetically competitive and due to the rearrangement of AETU to mercapto-ethylguanidine (MEG). The weak inhibitory effect of non-arginine based iNOS inhibitors on arginase activity further supports the view that such compounds may be of practical use for inhibition of NO production in cells simultaneously expressing iNOS and arginase.  相似文献   
86.
87.
NADPH-diaphorase (NADPH-D) activity and immunoreactivity for neural and endothelial nitric oxide synthase (nNOS and eNOS, respectively) were used to investigate nitric oxide (NO) regulation of penile vasculature. Both the histochemical and immunohistochemical techniques for NOS showed that all smooth muscles regions of the penis (dorsal penile artery and vein, deep penile vessels, and cavernosal muscles) were richly innervated. The endothelium of penile arteries, deep dorsal penile vein, and select veins in the crura and shaft were also stained for NADPH-D and eNOS. However, the endothelium of cavernous sinuses was unstained by both techniques. Fewer fibers were seen in the glans penis, those present being associated with small blood vessels and large nerve bundles near the trabecular walls. All penile neurons in the pelvic plexus, located by retrograde transport of a dye placed in the corpora cavernosa penis, were stained by the NADPH-D method. Essentially similar results were obtained with an antibody to nNOS. These data suggest that penile parasympathetic neurons comprise a uniform population, as all seem capable of forming nitric oxide. However, in contrast to the endothelium of penile vessels, the endothelium lining the cavernosal spaces may not be capable of nitric oxide synthesis.  相似文献   
88.
This is the first report on the ultrastructural distribution of nitric oxide synthase and endothelin immunoreactivities in the coronary and pulmonary arteries of newborn Wistar rats. The distribution of nitric oxide synthase and endothelin was investigated using pre-embedding peroxidase-antiperoxidase immunocytochemistry. In both arteries examined, positive labelling for nitric oxide synthase was localized both in the endothelium and smooth muscle, whereas positive labelling for endothelin was localized in the endothelium exclusively. In the coronary artery, approximately 80% and 55% of the endothelial cells examined were positive for nitric oxide synthase and endothelin, respectively, whereas in the pulmonary artery, 77% and 60% of the endothelial cells were positive for nitric oxide synthase and endothelin, respectively. These findings indicate that nitric oxide synthase and endothelin are colocalized in some of the endothelial cells of the newborn rat. In the endothelium, nitric oxide synthase and endothelin immunoreactivities were distributed throughout the cell cytoplasm and in association with the membranes of intracellular organelles. In smooth muscle, a relationship of nitric oxide synthase immunoreactivity to endoplasmic reticulum was observed in the pulmonary artery. In summary, in the newborn rat, endothelial cells of the coronary and pulmonary artery are rich in nitric oxide synthase (neuronal isoform) and endothelin, and it is suggested therefore that they may be substantially involved in vasomotor control of the cardiac and pulmonary circulation during early stages of postnatal development.  相似文献   
89.
We examined the effects of endogenous basic proteins rich in the amino acidL-arginine on neuronal NO synthase activity by monitoring cyclic GMP formation in intact neuron-like neuroblastoma N1E-115 cells. Histone, protamine and myelin basic protein significantly stimulated cyclic GMP formation, both in a time- and concentration-dependent manner. These effects were blocked by hemoglobin and NO synthase inhibitors. Removal of the extracellular/intracellular Ca2+ gradient by a Ca2+ chelator completely abolished the cyclic GMP responses elicited by histone and protamine, suggesting that influex of extracellular Ca2+ might be involved in their activation of NO synthase. The effects of myelin basic protein on cyclic GMP formation, however, appeared to be due to Ca2+ release from intracellular stores. In cytosolic preparations of rat cerebellum, these basic proteins inhibited the metabolism ofL-arginine intoL-citrulline by NO synthase. We conclude from our findings that endogenous basic proteins might be involved in the regulation of neuronal NO synthase activity. Their effects on the enzyme could be either stimulatory or inhibitory, depending on whether the basic proteins exert their effects extracellularly or intracellularly, respectively.  相似文献   
90.
Despite evidence which supports a neurotransmitter-like role for nitric oxide (NO) in the CNS, relatively little is known regarding mechanisms which control NO formation within CNS neurons. In this study, isolated nerve endings (synaptosomes) from rat cerebral cortex were used to ascertain whether NO can autoregulate its own formation within neurons through feedback inhibition of the NO biosynthetic enzyme nitric oxide synthase (NOS). Under the conditions described here, N-nitro-l-arginine methyl ester-sensitive conversion ofl-[3H]arginine intol-[3H]citrulline (i.e., NOS activity) was found to be highly calcium-dependent and strongly inhibited (up to 60 percent) by NO donors, including sodium nitroprusside, hydroxylamine and nitroglycerin. The inhibitory effect of sodium nitroprusside was concentration-dependent (IC50100 M) and prevented by the NO scavenger oxyhemoglobin.l-Citrulline, the other major end-product from NOS, had no apparent effect on synaptosomal NOS activity. Taken together, these results indicate that neuronal NOS can be inhibited by NO released from exogenous donors and, therefore, may be subject to end-product feedback inhibition by NO that is formed locally within neurons or released from proximal cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号