全文获取类型
收费全文 | 117篇 |
免费 | 0篇 |
专业分类
117篇 |
出版年
2023年 | 1篇 |
2022年 | 1篇 |
2021年 | 3篇 |
2019年 | 2篇 |
2018年 | 5篇 |
2017年 | 4篇 |
2016年 | 1篇 |
2014年 | 3篇 |
2013年 | 7篇 |
2012年 | 1篇 |
2011年 | 6篇 |
2010年 | 7篇 |
2009年 | 3篇 |
2008年 | 6篇 |
2007年 | 10篇 |
2006年 | 3篇 |
2005年 | 8篇 |
2004年 | 5篇 |
2003年 | 6篇 |
2002年 | 1篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1997年 | 1篇 |
1996年 | 4篇 |
1995年 | 4篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 2篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
排序方式: 共有117条查询结果,搜索用时 15 毫秒
71.
The cis/trans interconversion of Glt-Ala-Ala-Pro-Phe-4-nitroanilide and Glt-Ala-Gly-Pro-Phe-4-nitroanilide was studied both enzymatically and nonenzymatically by measuring kinetic β-deuterium isotope effects. The hydrogen atom at the -carbon atom of the Xaa residue within the Xaa-Pro moiety was substituted by deuterium. In the nonenzymatic case the transition state of rotation is reflected by kH/kD > 1. When catalysed by 17 kDa PPIase the same bond rotation is characterized by kH/kD < 1. This suggests a covalent mechanism of catalysis which involves an approximately tetravalent carbon of the prolyl imidic bond for the transition state of reaction. 相似文献
72.
Derunes C Burgess R Iraheta E Kellerer R Becherer K Gessner CR Li S Hewitt K Vuori K Pasquale EB Woods VL Ely KR 《FEBS letters》2006,580(1):175-178
Protein-protein interactions between SHEP and Cas proteins influence cellular signaling through tyrosine kinases, as well as integrin-mediated signaling, and may be linked to antiestrogen resistance. Data from past studies suggests that association between SHEP and Cas proteins is critical for these cellular effects. In this study, the interacting domains of each protein were co-expressed in bacteria and a soluble stable complex was purified. Deuterium exchange mass spectrometry was used to define regions that are buried when SHEP1 is in complex with Cas. The results reveal four segments in SHEP1 that are highly protected, including a region (residues 619-640) that contains a key residue, tyrosine 635, required for association with Cas. This region is predominately hydrophilic, yet remains protected from solvent in the complex. 相似文献
73.
The hydrogen transfer mechanism of cofactor reduction and recycling processes in the yeast reduction of alpha,beta-unsaturated ketone was studied by using quantitative isotope tracing close to natural abundance measured by (2)H NMR. In the reaction, the active cofactor is NADPH. The cofactor-transferred hydride attacks the beta sp(2) carbon of the enone carbonyl while water hydrogen is transferred to the alpha position. The reductant involved in the reaction depends on the quantity of yeast. When the amount of yeast is very large, the enzymes use preferentially certain unidentified substance stored in the yeast cells rather than the added glucose as electron donor. In this case, the hydrogen transferred by the cofactor is mainly of water origin. When the yeast amount is low, the added glucose is more efficiently used by the enzymes as electron donor and its hydrogen atoms bound to C-1 and C-3 are delivered to the substrate. 相似文献
74.
Oxidation of 8'-hydroxy abscisic acid in Black Mexican Sweet maize cell suspension cultures 总被引:2,自引:0,他引:2
In a biotransformation study to prepare deuterium labelled phaseic acid (PA) from deuterated abscisic acid (ABA), the product contained fewer deuterium atoms than expected. Thus, spectroscopic data of isolated deuterated PA prepared from biotransformation of (+)-5,8',8',8'-d4-ABA in maize (Zea mays L. cv. Black Mexican Sweet) cell suspension cultures showed 83% deuterium incorporation at the 8'-exo position. Also, metabolism studies of (+)-4,5-d2-ABA in maize resulted in the isolation of deuterium labelled ABA derivatives, namely PA, dihydrophaseic acid (DPA), 4'-O-beta-D-glucopyranosylDPA, 8'-hydroxyPA, 8'-hydroxyDPA and 8'-oxoDPA, as deduced from spectroscopic methods. These combined results suggested the presence of an aldehyde intermediate which is either: (a) reduced to 8'-hydroxyABA and cyclized to PA, or (b) is hydrated and cyclized to 8'-hydroxyPA or (c) is further oxidized to the acid and cyclized to 8'-oxoPA. The chemical synthesis of this intermediate, as well as its biotransformation in maize cell cultures is presented. 相似文献
75.
During recent years, the targets of protein structure analysis using nuclear magnetic resonance spectroscopy have become larger and more complicated. As a result, a complete and precise stable isotope labeling technique has been desired. A cell-free protein synthesis system is appropriate for this purpose. In the current study, we achieved precise and complete 15N and 2H labeling using an Escherichia coli cell extract-based cell-free protein synthesis system by controlling the metabolic reactions in the system with their chemical inhibitors. The addition of aminooxyacetate, d-malate, l-methionine sulfoximine, S-methyl-l-cysteine sulfoximine, 6-diazo-5-oxo-l-norleucine, and 5-diazo-4-oxo-l-norvaline was quite effective for precise amino acid-selective 15N labeling even for aspartic acid, asparagine, glutamic acid, and glutamine, which generally suffer from severe isotope scrambling and dilution when using the conventional cell-free system. For 2H labeling, the back-protonation of the Hα and Hβ positions, which commonly occurred in the conventional system, was dramatically suppressed by simply adding aminooxyacetate and d-malate to the cell-free system except for the Hα positions in methionine and cysteine. 相似文献
76.
Two to three days after harvesting, cassava (Manihot esculenta Crantz) roots suffer from post-harvest physiological deterioration (PPD) when secondary metabolites are accumulated. Amongst these are hydroxycoumarins (e.g. scopoletin and its glucoside scopolin) which play roles in plant defence and have pharmacological activities. Some steps in the biosynthesis of these molecules are still unknown in cassava and in other plants. We exploit the accumulation of these coumarins during PPD to investigate the E-Z-isomerisation step in their biosynthesis. Feeding cubed cassava roots with E-cinnamic-3,2′,3′,4′,5′,6′-d5 acid gave scopoletin-d2. However, feeding with E-cinnamic-3,2′,3′,4′,5′,6′-d6 and E-cinnamic-2,3,2′,3′,4′,5′,6′-d7 acids, both gave scopoletin-d3, the latter not affording the expected scopoletin-d4. We therefore synthesised and fed with E-cinnamic-2-d1 when unlabelled scopoletin was biosynthesised. Solely the hydrogen (or deuterium) at C2 of cinnamic acid is exchanged in the biosynthesis of hydroxycoumarins. If the mechanism of E-Z-cinnamic acid isomerisation were photochemical, we would not expect to see the loss of deuterium which we observed. Therefore, a possible mechanism is an enzyme catalysed 1,4-Michael addition, followed by σ-bond rotation and hydrogen (or deuterium) elimination to yield the Z-isomer. Feeding the roots under light and dark conditions with E-cinnamic-2,3,2′,3′,4′,5′,6′-d7 acid gave scopoletin-d3 with no significant difference in the yields. We conclude that the E-Z-isomerisation stage in the biosynthesis of scopoletin and scopolin, in cassava roots during PPD, is not photochemical, but could be catalysed by an isomerase which is independent of light. 相似文献
77.
S. Nag L. Lehmann G. Kettschau M. Toth T. Heinrich A. Thiele A. Varrone C. Halldin 《Bioorganic & medicinal chemistry》2013,21(21):6634-6641
The objective of this study was to synthesize and evaluate a novel fluorine-18 labeled deuterium substituted analogue of rasagiline (9, [18F]fluororasagiline-D2) as a potential PET radioligand for studies of monoamine oxidase B (MAO-B).The precursor compound (6) and reference standard (7) were synthesized in multi-step syntheses. Radiolabeling of 9 was accomplished by a two-step synthesis, compromising a nucleophilic substitution followed by hydrolysis of the sulfamidate group. The incorporation radiochemical yield from fluorine-18 fluoride was higher than 30%, the radiochemical purity was >99% and the specific radioactivity was >160 GBq/μmol at the time of administration.In vitro compound 7 inhibited the MAO-B activity with an IC50 of 173.0 ± 13.6 nM. The MAO-A activity was inhibited with an IC50 of 9.9 ± 1.1 μM. The fluorine-18 version 9 was characterized in the cynomolgus monkey brain where a high brain uptake was found (275% SUV at 4 min). There was a higher uptake in the striatum and thalamus compared to the cortex and cerebellum. A pronounced blocking effect (50% decrease) was observed in the specific brain regions after administration of l-deprenyl (0.5 mg/kg) 30 min prior to the administration of 9. Radiometabolite studies demonstrated 40% of unchanged radioligand at 90 min post injection.An efficient radiolabeling of 9 was successfully established and in the monkey brain 9 binds to MAO-B rich regions and its binding is blocked by the selective MAO-B compound l-deprenyl. The radioligand 9 is a potential candidate for human PET studies. 相似文献
78.
Palmitic and lauric acid complexes with amylose were studied by solid state methods: 13C CP/MAS NMR, deuterium NMR, X-ray powder diffraction and differential scanning calorimetry (DSC). The crystalline amylose complexes were found to be in a V-type sixfold single chain helix. The melting points of the complexes were over 100°C, at least 40–50°C higher than the melting points of the free fatty acids. CP/MAS 13C NMR spectra revealed two resonance peaks at 33.6 and 32.4 ppm for the palmitic acid, which were assigned as free and complexed fatty acid, respectively. A single resonance peak at 32.4 ppm was found for the lauric acid and assigned to the complex. The chemical shift of 32.4 ppm for the complexed fatty acids suggests a combined trans and gauche conformation for the fatty acid chain in the complex. T1 relaxation measurements on the two palmitic acid resonances show different behavior: a very slow relaxation for the 33.6 ppm and a much faster relaxation (1.2 s) for the 32.4 ppm resonances. The latter was similar to the relaxation of the single resonance of the lauric acid (1.1 s). Temperature dependent deuterium spectra of the amylose–lauric acid and amylose–palmitic acid complexes suggest a complete complexation for the amylose–lauric acid, whereas the amylose–palmitic acid complex is partially disassociated by the thermal treatment. Based on the overall data, a partially disordered model is proposed: an imperfect helix with the fatty acid partly inside and partly out, depending on crystallization conditions and the necessity of placing the carboxyl head outside the V-helix. 相似文献
79.
Stable carbon- (δ13C), nitrogen- (δ15N) and hydrogen (δD) isotope profiles in feathers of migratory Great Reed Warblers Acrocephalus
arundinaceus recaptured for 2 or more years in 6 successive years were examined to test whether the isotope profiles of individual warblers
appeared to be consistent between years. Similar isotopic signatures in successive years suggested that individual birds tended
to return and grow their feathers in Afro-tropical wintering habitats that generate similar δ13C, δ15N and δD signatures. Previous studies have shown that Great Reed Warblers exhibit strong natal and breeding philopatry, with
most of the surviving birds returning to the breeding site. The present study of feather δ13C, δ15N and δD isotopic values demonstrate the year-to-year fidelity might also include the African moulting sites in this migratory
species. 相似文献
80.
Andy C. Wang Stephan Grzesiek Rolf Tschudin Patricia J. Lodi Ad Bax 《Journal of biomolecular NMR》1995,5(4):376-382
Summary It is demonstrated that sequential resonance assignment of the backbone 1H and 15N resonances of proteins can be obtained without recourse to the backbone amide protons, an approach which should be useful for assignment of regions with rapidly exchanging backbone amide protons and for proteins rich in proline residues. The method relies on the combined use of two 2D experiments, HA(CA)N and HA(CACO)N or their 3D analogs, which correlate 1H with the intraresidue 15N and with the 15N resonance of the next residue. The experiments are preferably conducted in D2O, where very high resolution in the 15N dimension can be achieved by using 2H decoupling. The approach is demonstrated for a sample of human ubiquitin, uniformly enriched in 13C and 15N. Complete backbone and 13C/1H resonance assignments are presented. 相似文献