首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1195篇
  免费   30篇
  国内免费   13篇
  1238篇
  2023年   11篇
  2022年   19篇
  2021年   14篇
  2020年   23篇
  2019年   45篇
  2018年   55篇
  2017年   30篇
  2016年   20篇
  2015年   10篇
  2014年   68篇
  2013年   78篇
  2012年   46篇
  2011年   79篇
  2010年   54篇
  2009年   59篇
  2008年   77篇
  2007年   70篇
  2006年   53篇
  2005年   44篇
  2004年   23篇
  2003年   25篇
  2002年   20篇
  2001年   13篇
  2000年   9篇
  1999年   11篇
  1998年   7篇
  1997年   11篇
  1996年   4篇
  1995年   4篇
  1994年   11篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1988年   3篇
  1986年   2篇
  1985年   22篇
  1984年   29篇
  1983年   19篇
  1982年   23篇
  1981年   22篇
  1980年   9篇
  1979年   20篇
  1978年   26篇
  1977年   13篇
  1976年   10篇
  1975年   7篇
  1974年   9篇
  1973年   6篇
  1972年   3篇
排序方式: 共有1238条查询结果,搜索用时 15 毫秒
71.
This review is devoted to the chiral optical behavior of films of racemic polymers whose chirality is induced by cocrystallization with nonracemic (also temporary) guest molecules. We provide examples of macromolecular amplification of chirality, produced by molecular and supramolecular mechanisms, on industrially relevant polymers like poly(2,6‐dimethyl‐1,4‐phenylene)oxide (PPO) and syndiotactic polystyrene (s‐PS). Chirality 28:29–38, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   
72.
The titan arum, Amorphophallus titanum, is a flowering plant with the largest inflorescence in the world. The flower emits a unique rotting animal-like odor that attracts insects for pollination. To determine the chemical identity of this characteristic odor, we performed gas chromatography-mass spectrometry-olfactometry analysis of volatiles derived from the inflorescence. The main odorant causing the smell during the flower-opening phase was identified as dimethyl trisulfide, a compound with a sulfury odor that has been found to be emitted from some vegetables, microorganisms, and cancerous wounds.  相似文献   
73.
Naturally occurring (+)-trans-isoalliin, (RCRS)-(+)-trans-S-1-propenyl-L-cysteine sulfoxide, is a major cysteine sulfoxide in onion. The importance of producing it synthetically to support further research is very well recognized. The (+)-trans-isoalliin is prepared by chemical synthesis and reversed-phase (RP)-HPLC. First, S-2-propenyl-L-cysteine (deoxyalliin) is formed from L-cysteine and allyl bromide, which is then isomerized to S-1-propenyl-L-cysteine (deoxyisoalliin) by a base-catalyzed reaction. A mixture of cis and trans forms of deoxyisoalliin is formed and separated by RP-HPLC. Oxidation of the trans form of deoxyisoalliin by H2O2 produces a mixture of (−)- and (+)-trans-isoalliin. Finally, RP-HPLC is used successfully in separating (−)- and (+)-trans-isoalliin, and hence, (+)-trans-isoalliin is synthesized for the first time in this study. In addition, the (±) diastereomers of cis-isoalliin are also separated and purified by RP-HPLC.  相似文献   
74.
Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein–lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions.  相似文献   
75.
Summary To identify possible reasons that may contribute to recalcitrance in plant protoplasts, the time course of new cell wall deposition was studied by scanning electron microscopy in protoplasts of a recalcitrant species, the grapevine. Results showed that microfibrils were developed after 2 days of culture, that complete cell wall formation occurred on Day 6 to 7 of protoplast culture, and its ultrastructural appearance was identical to that of grapevine leaf-derived callus cells. In addition, a comparative study was undertaken on [U-14C]glucose uptake and incorporation in ethanol-soluble, cellulosic, and noncellulosic polysaccharide fractions in protoplasts of grapevine and of a readily regenerating species, tobacco, during culture. There was a significantly higher [U-14C]glucose uptake by tobacco than by grapevine protoplasts. The label distribution in the ethanol-soluble, cellulosic, and noncellulosic fractions of newly synthesized cell walls differed quantitatively between the two species. In particular, the labeled glucose incorporated in the noncellulosic cell wall fraction was threefold greater in tobacco than in grapevine protoplasts. Differences were also revealed in the monosaccharide composition of this fraction between the two species. Addition of dimethyl sulfoxide to the culture medium resulted in a dramatic increase in [U-14C]glucose uptake by grapevine protoplasts, whereas it exhibited a limited effect in tobacco protoplasts. It showed no effect on the ultrastructural characteristics of new cell wall nor on the incorporation rate of labeled glucose in the cellulosic and noncellulosic cell wall fractions.  相似文献   
76.
M. Miko  B. Chance 《BBA》1975,396(2):165-174
This paper describes the uncoupling effect of three isothiocyanates: p-bromophenylisothiocyanate, 4,4′-diisothiocyanatebiphenyl and β-naphtylmethylisothiocyanate on the respiration of Ehrlich-Lettré cells and isolated mitochondria. The isothiocyanates are similar to other uncouplers (such as 2,4-dinitrophenol and carbonyl cyanide p-trifluoromethoxyphenylhydrazone) in that they: 1. stimulate respiration of state 4 mitochondria; 2. stimulate mitochondrial ATPase activity; 3. release the inhibition of mitochondrial respiration by oligomycin and 4. inhibit both mitochondrial respiration and mitochondrial ATPase activity at higher molar concentrations. The uncoupling activity of these isothiocyanates correlates well with their biological activity. Maximal activation of a latent mitochondrial ATPase activity of rat liver mitochondria in the presence of p-bromophenylisothiocyanate was found at a concentration of 15 μM. The investigated isothiocyanates differ significantly in their solubility in organic solvents and their chemical reactivity. We assume that the greater the partition coefficient in a series of isothiocyanates grouped according to the increasing value of log P (partition coefficient for the system octanol/water, 25 °C), the greater will be their uncoupling activity, but only up to a certain degree. Any further increase of log P will be marked by a decrease of this activity.  相似文献   
77.
It is known that reactive oxygen species can oxidize methionine residues in proteins in a non-stereospecific manner, and cells have mechanisms to reverse this damage. MsrA and MsrB are members of the methionine sulfoxide family of enzymes that specifically reduce the S and R forms, respectively, of methionine sulfoxide in proteins. However, in Escherichia coli the level of MsrB activity is very low which suggested that there may be other enzymes capable of reducing the R epimer of methionine sulfoxide in proteins. Employing a msrA/B double mutant, a new peptide methionine sulfoxide reductase activity has been found associated with membrane vesicles from E. coli. Both the R and S forms of N-acetylmethionine sulfoxide, D-ala-met(o)-enkephalin and methionine sulfoxide, are reduced by this membrane associated activity. The reaction requires NADPH and may explain, in part, how the R form of methionine sulfoxide in proteins is reduced in E. coli. In addition, a new soluble Msr activity was also detected in the soluble extracts of the double mutant that specifically reduces the S epimer of met(o) in proteins.  相似文献   
78.
79.
Adult development and production of up to 400 eggs within the pupal case of female silkmoths are both dependent on 20-hydroxyecdysone (20E), the steroid hormone of insects. When adult development was initiated with tebufenozide, the non-steroidal ecdysteroid agonist, instead of 20E, full development of all epidermal tissues like the wing was witnessed, but ovarian growth and egg formation was minimal. Administration of tebufenozide to female pharate adults caused disruption of the follicular epithelium, produced nurse cell damage, and inhibited oogenesis. Reduced ability to synthesize RNA and protein accompanied these tebufenozide induced morphological disturbances of the follicles. In vivo accumulation of vitellogenin (Vg) from the hemolymph was reduced in tebufenozide treated female ovaries as well as their ability to accumulate Vg in vitro. Determination of protein staining intensity and antibody reactivity of Vg pointed out that hemolymph Vg level remained fairly constant all through adult development whether induced by 20E or tebufenozide. Measurement of hemolymph volumes and hemolymph Vg levels of control and experimental animals allowed us to conclude that egg development involves the uptake of all the hemolymph proteins and not Vg alone. The loss of hemolymph that accompanies egg maturation was considerably reduced in tebufenozide initiated female pharate adults. 20E could not overcome ovarian growth inhibitory effects of tebufenozide. Dual mechanisms, one involving ecdysteroid antagonist action at the beginning of development, and the other unrelated to that function during heightened egg formation, are needed explain the biphasic inhibitory actions of tebufenozide on silkmoth ovaries.  相似文献   
80.
Ellagic acid, a common plant phenol, was shown to be a potent inhibitor of epidermal microsomal aryl hydrocarbon hydroxylase (AHH) activity in vitro, and of benzo[a]pyrene (BP)-binding to both calf thymus DNA in vitro and to epidermal DNA in vivo. The in vitro addition of ellagic acid (0.25-2.0 microM) resulted in a dose-dependent inhibition of AHH activity in epidermal microsomes prepared from control or carcinogen-treated animals. The I50 of ellagic acid for epidermal AHH was 1.0 microM making it the most potent inhibitor of epidermal AHH yet identified. In vitro addition of ellagic acid to microsomal suspensions prepared from control or coal tar-treated animals resulted in 90% inhibition of BP-binding to calf thymus DNA. Application of ellagic acid to the skin (0.5-10.0 mumol/10 gm body wt) caused a dose-dependent inhibition of BP-binding to epidermal DNA. Our results suggest that phenolic compounds such as ellagic acid may prove useful in modulating the risk of cutaneous cancer from environmental chemicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号