首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   981篇
  免费   25篇
  国内免费   5篇
  1011篇
  2023年   6篇
  2022年   10篇
  2021年   11篇
  2020年   11篇
  2019年   21篇
  2018年   37篇
  2017年   7篇
  2016年   6篇
  2015年   11篇
  2014年   86篇
  2013年   105篇
  2012年   65篇
  2011年   71篇
  2010年   38篇
  2009年   58篇
  2008年   61篇
  2007年   44篇
  2006年   25篇
  2005年   35篇
  2004年   13篇
  2003年   11篇
  2002年   9篇
  2001年   11篇
  2000年   4篇
  1999年   9篇
  1998年   11篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1986年   2篇
  1985年   8篇
  1984年   27篇
  1983年   16篇
  1982年   21篇
  1981年   10篇
  1980年   21篇
  1979年   16篇
  1978年   10篇
  1977年   14篇
  1976年   13篇
  1975年   7篇
  1974年   11篇
  1973年   5篇
排序方式: 共有1011条查询结果,搜索用时 15 毫秒
61.
The formation of a complex between Rac1 and the cytoplasmic domain of plexin-B1 is one of the first documented cases of a direct interaction between a small guanosine 5′-triphosphatase (GTPase) and a transmembrane receptor. Structural studies have begun to elucidate the role of this interaction for the signal transduction mechanism of plexins. Mapping of the Rac1 GTPase surface that contacts the Rho GTPase binding domain of plexin-B1 by solution NMR spectroscopy confirms the plexin domain as a GTPase effector protein. Regions neighboring the GTPase switch I and II regions are also involved in the interaction and there is considerable interest to examine the changes in protein dynamics that take place upon complex formation. Here we present main-chain nitrogen-15 relaxation measurements for the unbound proteins as well as for the Rho GTPase binding domain and Rac1 proteins in their complexed state. Derived order parameters, S2, show that considerable motions are maintained in the bound state of plexin. In fact, some of the changes in S2 on binding appear compensatory, exhibiting decreased as well as increased dynamics. Fluctuations in Rac1, already a largely rigid protein on the picosecond-nanosecond timescale, are overall diminished, but isomerization dynamics in the switch I and II regions of the GTPase are retained in the complex and appear to be propagated to the bound plexin domain. Remarkably, fluctuations in the GTPase are attenuated at sites, including helices α6 (the Rho-specific insert helix), α7 and α8, that are spatially distant from the interaction region with plexin. This effect of binding on long-range dynamics appears to be communicated by hinge sites and by subtle conformational changes in the protein. Similar to recent studies on other systems, we suggest that dynamical protein features are affected by allosteric mechanisms. Altered protein fluctuations are likely to prime the Rho GTPase-plexin complex for interactions with additional binding partners.  相似文献   
62.
J.C. Brochon  Ph. Wahl  J.M. Jallon  M. Iwatsubo 《BBA》1977,462(3):759-769
A method is proposed to determine the rates of singlet energy transfers in an array of chromophores containing a finite number of donors and fluorescent acceptors. This method is based on measurements of transfer efficiency coupled with pulse fluorimetry. Three classes of donors can be distinguished which differ in their energy transfer rate. The rates of the first, the second and the third class are respectively greater than, of the order of, and smaller than the emission rate. The method is applied to the study of the energy transfers from tryptophan residues to NADPH, in ternary and quaternary glutamate dehydrogenase complexes. Practically, all these tryptophan residues belong to the first class. They can be divided into two subclasses having different transfer rate values. The distances between these residues and the NADPH site are of the order of 2.5 nm. In addition, the ligand binding induces a protein conformational change, leading to a fluorescence quenching of the tryptophanyl emission.  相似文献   
63.
A previous study on the evolutionary patterns of Tarentola mauritanica demonstrated that low levels of mitochondrial diversity observed in the European populations relative to nuclear markers were consistent with a selective sweep hypothesis. In order to unravel the mitochondrial evolutionary history in this European population and two other lineages of T. mauritanica (Iberian and North African clades), variation within 22 nearly complete mitogenomes was analyzed. Surprisingly, each clade seems to have a distinct evolutionary history; with both the European and Iberian clades presenting a decrease of polymorphism, which in the former is consistent with departure from neutrality of the mtDNA (positive or background selection), but in the latter seems to be the result of a bottleneck after a population expansion. The pattern exhibited by the North African clade seems to be a consequence of adaptation to certain mtDNA variants by positive selection.  相似文献   
64.
Sandhoff disease (SD) is an autosomal recessive lysosomal storage disease caused by mutations in the HEXB gene encoding the beta subunit of hexosaminidases A and B, two enzymes involved in GM2 ganglioside degradation. Eleven French Sandhoff patients with infantile or juvenile forms of the disease were completely characterized using sequencing of the HEXB gene. A specific procedure was developed to facilitate the detection of the common 5′-end 16 kb deletion which was frequent (36% of the alleles) in our study. Eleven other disease-causing mutations were found, among which four have previously been reported (c.850C>T, c.793T>G, c.115del and c.800_817del). Seven mutations were completely novel and were analyzed using molecular modelling. Two deletions (c.176del and c.1058_1060del), a duplication (c.1485_1487dup) and a nonsense mutation (c.552T>G) were predicted to strongly alter the enzyme spatial organization. The splice mutation c.558+5G>A affecting the intron 4 consensus splice site led to a skipping of exon 4 and to a truncated protein (p.191X). Two missense mutations were found among the patients studied. The c.448A>C mutation was probably a severe mutation as it was present in association with the known c.793T>G in an infantile form of Sandhoff disease and as it significantly modified the N-terminal domain structure of the protein. The c.171G>C mutation resulting in a p.W57C amino acid substitution in the N-terminal region is probably less drastic than the other abnormalities as it was present in a juvenile patient in association with the c.176del. Finally, this study reports a rapid detection of the Sandhoff disease-causing alleles facilitating genetic counselling and prenatal diagnosis in at-risk families.  相似文献   
65.
Partial duplication of 11q is related to several malformations like growth retardation, intellectual disability, hypoplasia of corpus callosum, short nose, palate defects, cardiac, urinary tract abnormalities and neural tube defects. We have studied the clinical and molecular characteristics of a patient with severe intellectual disabilities, dysmorphic features, congenital inguinal hernia and congenital cerebral malformation which is referred to as cytogenetic exploration. We have used FISH and array CGH analysis for a better understanding of the double chromosomic aberration involving a 7p microdeletion along with a partial duplication of 11q due to adjacent segregation of a paternal reciprocal translocation t(7;11)(p22;q21) revealed after banding analysis. The patient's karyotype formula was: 46,XY,der(7)t(7;11)(p22;q21)pat. FISH study confirmed these rearrangement and array CGH technique showed precisely the loss of at least 140 Kb on chromosome7p22.3pter and 33.4 Mb on chromosome11q22.1q25. Dysmorphic features, severe intellectual disability and brain malformations could result from the 11q22.1q25 trisomy. Our study provides an additional case for better understanding and delineating the partial duplication 11q.  相似文献   
66.
Molecular dynamics simulation of Thermus thermophilus (Tt) RNA polymerase (RNAP) in a catalytic conformation demonstrates that the active site dNMP–NTP base pair must be substantially dehydrated to support full active site closing and optimum conditions for phosphodiester bond synthesis. In silico mutant β R428A RNAP, which was designed based on substitutions at the homologous position (Rpb2 R512) of Saccharomyces cerevisiae (Sc) RNAP II, was used as a reference structure to compare to Tt RNAP in simulations. Long range conformational coupling linking a dynamic segment of the bridge α-helix, the extended fork loop, the active site, and the trigger loop–trigger helix is apparent and adversely affected in β R428A RNAP. Furthermore, bridge helix bending is detected in the catalytic structure, indicating that bridge helix dynamics may regulate phosphodiester bond synthesis as well as translocation. An active site “latch” assembly that includes a key trigger helix residue Tt β′ H1242 and highly conserved active site residues β E445 and R557 appears to help regulate active site hydration/dehydration. The potential relevance of these observations in understanding RNAP and DNAP induced fit and fidelity is discussed.  相似文献   
67.
Apyrase/ATP-diphosphohydrolase hydrolyzes di- and triphosphorylated nucleosides in the presence of a bivalent ion with sequential release of orthophosphate. We performed studies of substrate specificity on homogeneous isoapyrases from two potato tuber clonal varieties: Desiree (low ATPase/ADPase ratio) and Pimpernel (high ATPase/ADPase ratio) by measuring the kinetic parameters K(m) and k(cat) on deoxyribonucleotides and fluorescent analogues of ATP and ADP. Both isoapyrases showed a broad specificity towards dATP, dGTP, dTTP, dCTP, thio-dATP, fluorescent nucleotides (MANT-; TNP-; ethene-derivatives of ATP and ADP). The hydrolytic activity on the triphosphorylated compounds was always higher for the Pimpernel apyrase. Modifications either on the base or the ribose moieties did not increase K(m) values, suggesting that the introduction of large groups (MANT- and TNP-) in the ribose does not produce steric hindrance on substrate binding. However, the presence of these bulky groups caused, in general, a reduction in k(cat), indicating an important effect on the catalytic step. Substantial differences were observed between potato apyrases and enzymes from various animal tissues, concerning affinity labeling with azido-nucleotides and FSBA (5'-p-fluorosulfonylbenzoyl adenosine). PLP-nucleotide derivatives were unable to produce inactivation of potato apyrase. The lack of sensitivity of both potato enzymes towards these nucleotide analogues rules out the proximity or adequate orientation of sulfhydryl, hydroxyl or amino-groups to the modifying groups. Both apyrases were different in the proteolytic susceptibility towards trypsin, chymotrypsin and Glu-C.  相似文献   
68.
Astrocytes become activated in response to brain injury, as characterized by increased expression of glial fibrillary acidic protein (GFAP) and increased rates of cell migration and proliferation. Damage to brain cells causes the release of cytoplasmic nucleotides, such as ATP and uridine 5'-triphosphate (UTP), ligands for P2 nucleotide receptors. Results in this study with primary rat astrocytes indicate that activation of a G protein-coupled P2Y(2) receptor for ATP and UTP increases GFAP expression and both chemotactic and chemokinetic cell migration. UTP-induced astrocyte migration was inhibited by silencing of P2Y(2) nucleotide receptor (P2Y(2)R) expression with siRNA of P2Y(2)R (P2Y(2)R siRNA). UTP also increased the expression in astrocytes of alpha(V)beta(3/5) integrins that are known to interact directly with the P2Y(2)R to modulate its function. Anti-alpha(V) integrin antibodies prevented UTP-stimulated astrocyte migration, suggesting that P2Y(2)R/alpha(V) interactions mediate the activation of astrocytes by UTP. P2Y(2)R-mediated astrocyte migration required the activation of the phosphatidylinositol-3-kinase (PI3-K)/protein kinase B (Akt) and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways, responses that also were inhibited by anti-alpha(V) integrin antibody. These results suggest that P2Y(2)Rs and their associated signaling pathways may be important factors regulating astrogliosis in brain disorders.  相似文献   
69.
The inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP3-induced Ca2+ release was followed by Ca2+ reuptake into intracellular compartments. The IP3-induced Ca2+ release diminished after sequential applications of the same amount of IP3. Addition of 20 microM GTP fully restored the sensitivity to IP3. Guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) could not replace GTP but prevented the action of GTP. The effects of GTP and GTP gamma S were reversible. Neither GTP nor GTP gamma S induced release of Ca2+ in the absence of IP3. The amount of Ca2+ whose release was induced by IP3 depended on the free Ca2+ concentration of the medium. At 0.3 microM free Ca2+, a half-maximal Ca2+ no Ca2+ release was observed with 0.1 microM IP3; at this Ca2+ concentration, higher concentrations of IP3 (0.25 microM) were required to evoke Ca2+ release. At 8 microM free Ca2+, even 0.25 microM IP3 failed to induce release of Ca2+ from the store. The IP3-induced Ca2+ release at constant low (0.2 microM) free Ca2+ concentrations correlated directly with the amount of stored Ca2+. depending on the filling state of the intracellular compartment, 1 mol of IP3 induced release of between 5 and 30 mol of Ca2+.  相似文献   
70.
Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP+(d)NDP<-->ADP+(d)NTP. This reaction, suggested to occur by the transfer of the gamma-phosphoryl from ATP to the nucleoside diphosphate, is overall similar to that normally carried out by nucleoside diphosphate kinase (Ndk). Accordingly, Adk was proposed to be responsible for residual Ndk-like activity measured in a mutant strain of Escherichia coli, where the ndk gene was disrupted. We present data supporting a mechanism for the synthesis of nucleoside triphosphates by Adk that unlike the previously suggested mechanism mentioned above are in complete agreement with the current knowledge about the Adk enzyme and its various catalytic properties. We propose that nucleoside triphosphate synthesis occurs by beta-phosphoryl transfer from ADP to any bound nucleoside diphosphate. Our results point to the fact that the proposed Ndk-like mechanism of Adk originated from an erroneous interpretation of data, in that contamination of ATP preparations with AMP and ADP was not taken into account. Our results also address the proposed role of Adk in restoring a normal growth rate of mutant strains of E. coli lacking Ndk. These mutant strains apparently, in spite of a mutator phenotype, are able to synthesise nucleoside triphosphates by alternative pathways to maintain the same growth rate as the wildtype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号