首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   1篇
  2020年   2篇
  2019年   1篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   4篇
  2012年   6篇
  2011年   2篇
  2010年   3篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2000年   1篇
  1997年   2篇
  1996年   1篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1980年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
21.
DNA甲基化是表观遗传学研究的重要内容。其本质是在甲基转移酶的催化下,DNA的CG两个核苷酸的胞嘧啶被选择性地添加甲基,形成5’甲基胞嘧啶的过程。CpG岛是DNA甲基化常发生的部位。CpG岛指基因组中长度为300~3000 bp的富含CpG二核苷酸的一些区域,主要存在于基因的5’区域。以往的研究表明,肺癌的发生常与CpG岛的异常甲基化有关。多基因异常的甲基化常为肿瘤发生的重要机制。近年来,研究比较热门的基因有p16、RASSF1A、CDH1、CDH13、FHTI、TMS1/ASC等。研究集中在肺癌组织与癌旁组织甲基化频率的统计分析,以及对于血液,痰液,肺泡灌洗液发生甲基化频率的统计分析。对于肺癌相关抑癌基因甲基化的研究,为肺癌患者的早期诊断提供思路,并为治疗开辟新的方向。去甲基化治疗虽研究较少,但目前已取得一定进展。  相似文献   
22.
23.
Nicotine or nornicotine enriched with stable isotopes in either the N'-methyl group or the pyrrolidine-N were fed to Nicotiana plumbaginifolia suspension cell cultures that do not form endogenous nicotine. The metabolism of these compounds was investigated by analysing the incorporation of isotope into other alkaloids using gas chromatography-mass spectroscopy (GC-MS). Nicotine metabolism primarily resulted in the accumulation of nornicotine, the N'-demethylation product. In addition, six minor metabolites appeared during the course of nicotine metabolism, four of which were identified as cotinine, myosmine, N'-formylnornicotine and N'-carboethoxynornicotine. While cotinine was formed from [(13)C,(2)H(3)-methyl]nicotine without dilution of label, N'-formylnornicotine was labelled at only about 6% of the level of nicotine and N'-carboethoxynornicotine was unlabelled. Feeding with [1'-(15)N]nornicotine resulted in incorporation without dilution of label into both N'-formylnornicotine and N'-carboethoxynornicotine. This pattern strongly indicates that, while nornicotine and cotinine are derived directly from nicotine, N'-formylnornicotine and N'-carboethoxynornicotine are metabolites of nornicotine. Thus, it is directly demonstrated that N'-formylnornicotine is not an intermediate in nicotine demethylation.  相似文献   
24.
Human AlkB homolog 3 (ALKBH3), a homolog of the Escherichia coli protein AlkB, demethylates 1-methyladenine and 3-methylcytosine (3-meC) in single-stranded DNA and RNA by oxidative demethylation. Immunohistochemical analyses on clinical cancer specimens and knockdown experiments using RNA interference in vitro and in vivo indicate that ALKBH3 is a promising molecular target for the treatment of prostate, pancreatic, and non-small cell lung cancer. Therefore, an inhibitor for ALKBH3 demethylase is expected to be a first-in-class molecular-targeted drug for cancer treatment. Here, we report the development of a novel, quantitative real-time PCR-based assay for ALKBH3 demethylase activity against 3-meC by highly active recombinant ALKBH3 protein using a silkworm expression system. This assay enables us to screen for inhibitors of ALKBH3 demethylase, which may result in the development of a novel molecular-targeted drug for cancer therapy.  相似文献   
25.
Well-known epigenetic DNA modifications in mammals include the addition of a methyl group and a hydroxyl group to cytosine, resulting in 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) respectively. In contrast, the abundance and the functional implications of these modifications in invertebrate model organisms such as the honey bee (Apis mellifera) and the fruit fly (Drosophila melanogaster) are not well understood. Here we show that both adult honey bees and fruit flies contain 5mC and also 5hmC. Using a highly sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) technique, we quantified 5mC and 5hmC in different tissues of adult honey bee worker castes and in adult fruit flies. A comparison of our data with reports from human and mouse shed light on notable differences in 5mC and 5hmC levels between tissues and species.  相似文献   
26.
为了探讨细胞和组织中的O~6-甲基脱氧鸟嘌呤核苷的脱甲基作用,我们合成了[~3H]O~6-mGua DNA、O~6-mdGuo、O~6-mdGMP、O~6-mdGTP等底物,在体外利用高压液相色谱分析细胞和组织提取物去除鸟嘌呤基团第六位氧原子上甲基的能力。结果表明,在细胞和组织提取物中存在一种去甲基酶,它能去除O~6-甲基脱氧鸟嘌呤核苷、O~6-甲基脱氧鸟嘌呤核苷-磷酸上的甲基,生成脱氧鸟嘌呤核苷或脱氧鸟嘌呤核苷-磷酸,并伴随着甲醇的释放。它不同于DNA甲基转移酶。没有观察到它对O~6-甲基鸟嘌呤DNA、O~6-甲基脱氧鸟嘌呤核苷三磷酸、O~4-甲基胸腺嘧啶核苷以及O~6-甲基鸟嘌呤的去甲基作用。  相似文献   
27.
With the objective of returning cells to their undifferentiated state through alteration of epigenetic states, small molecules have been used that specifically inhibit proteins involved in sustaining the epigenetic system. However, this chemical-based approach can cause chaotic epigenomic states due to random actions of the inhibitors. We investigated whether JHDM3A/JMJD2A, a trimethylated histone H3-lysine 9 (H3K9me3)-specific demethylase, could function as an effector molecule to selectively demethylate target chromatin, with the aid of a guide protein to serve as a delivery vehicle. JHDM3A, which normally locates in euchromatin, spread out to heterochromatin when it was fused to heterochromatin protein-1α (HP1α) or HP1β; in these cells, demethylation efficiency was also markedly increased. Two truncated modules, JHDM3A(GFP)(406) and JHDM3A(GFP)(701), had contrasting modes and efficiencies of H3K9me3 demethylation; JHDM3A(GFP)(406) showed a very uniform rate (~80%) of demethylation, whereas JHDM3A(GFP)(701) had a broad methylation range of 4-80%. The methylation values were highly dependent on the presence of the guide proteins OCT4, CTCF, and HP1. Chromatin immunoprecipitation detected reduced H3K9me3 levels at OCT4 regulatory loci in the cells expressing OCT4-tagged JHDM3A(GFP)(701). Derepression of the Sox2 gene was observed in JHDM3A(GFP)(701)OCT4-expressing cells, but not in cells that expressed the JHDM3A(GFP)(701) module alone. JHDM3A(GFP)(701)-assisted OCT4 more efficiently turned on stem cell-related microRNAs than GFP-OCT4 itself. These results suggest that JHDM3A(GFP)(701) is a suitable catalytic module that can be targeted, under the control of a guide protein, to specific loci where the chromatin H3K9me3 status and the milieu of gene expression are to be modified.  相似文献   
28.
29.
Biodegradation of diethyl phthalate in soil by a novel pathway   总被引:12,自引:0,他引:12  
Biodegradation of diethyl phthalate (DEP) has been shown to occur as a series of sequential steps common to the degradation of all phthalates. Primary degradation of DEP to phthalic acid (PA) has been reported to involve the hydrolysis of each of the two diethyl chains of the phthalate to produce the monoester monoethyl phthalate (MEP) and then PA. However, in soil co-contaminated with DEP and MeOH, biodegradation of the phthalate to PA resulted in the formation of three compounds, in addition to MEP. These were characterised by gas chromatography-electron ionisation mass spectrometry and nuclear magnetic resonance as ethyl methyl phthalate, dimethyl phthalate and monomethyl phthalate, and indicated the existence of an alternative pathway for the degradation of DEP in soil co-contaminated with MeOH. Transesterification or demethylation were proposed as the mechanisms for the formation of the three compounds, although the 7:1 ratio of H(2)O to MeOH means that transesterification is unlikely.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号