首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2591篇
  免费   232篇
  国内免费   176篇
  2024年   10篇
  2023年   83篇
  2022年   133篇
  2021年   178篇
  2020年   175篇
  2019年   184篇
  2018年   173篇
  2017年   126篇
  2016年   110篇
  2015年   133篇
  2014年   166篇
  2013年   234篇
  2012年   128篇
  2011年   151篇
  2010年   92篇
  2009年   103篇
  2008年   112篇
  2007年   116篇
  2006年   103篇
  2005年   70篇
  2004年   64篇
  2003年   46篇
  2002年   42篇
  2001年   45篇
  2000年   21篇
  1999年   19篇
  1998年   22篇
  1997年   20篇
  1996年   16篇
  1995年   15篇
  1994年   10篇
  1993年   11篇
  1992年   7篇
  1991年   11篇
  1990年   3篇
  1989年   10篇
  1988年   10篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
排序方式: 共有2999条查询结果,搜索用时 15 毫秒
111.
Summary: Gene therapeutic approaches to cure genetic diseases require tools to express the rescuing gene exclusively within the affected tissues. Viruses are often chosen as gene transfer vehicles but they have limited capacity for genetic information to be carried and transduced. In addition, to avoid off‐target effects the therapeutic gene should be driven by a tissue‐specific promoter in order to ensure expression in the target organs, tissues, or cell populations. The larger the promoter, the less space will be left for the respective gene. Thus, there is a need for small but tissue‐specific promoters. Here, we describe a compact unc45b promoter fragment of 195 bp that retains the ability to drive gene expression exclusively in skeletal and cardiac muscle in zebrafish and mouse. Remarkably, the described unc45b promoter fragment not only drives muscle‐specific expression but presents heat‐shock inducibility, allowing a temporal and spatial quantity control of (trans)gene expression. Here, we demonstrate that the transgenic expression of the smyd1b gene driven by the unc45b promoter fragment is able to rescue the embryonically lethal heart and skeletal muscle defects in smyd1b‐deficient flatline mutant zebrafish. Our findings demonstrate that the described muscle‐specific unc45b promoter fragment might be a valuable tool for the development of genetic therapies in patients suffering from myopathies. genesis 54:431–438, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.  相似文献   
112.
Rho激酶,又称Rho相关的卷曲蛋白激酶,是一类丝氨酸/苏氨酸蛋白激酶,被发现为小G蛋白Rho的下游作用底物。由于Rho激酶活性涉及神经细胞的功能,而且越来越多的研究表明抑制Rho激酶的活性在数种神经退行性疾病包括帕金森病、阿尔茨海默病、亨廷顿病、多发性硬化症,和肌萎缩性侧索硬化症等的实验模式中都有明显的效果。因此,Rho激酶已成为针对治疗神经性退化性疾病的一个热门标靶蛋白。本文探讨Rho激酶抑制剂在神经退化性疾病上的应用及发展,使神经退行性疾病能进一步提升治疗和在应用上的水平。  相似文献   
113.
The melanopsin system consists of intrinsically photosensitive retinal ganglion cells containing the photopigment melanopsin (mRGCs). These mRGCs mediate several non-image-forming visual functions, including light entrainment of circadian rhythms. Here we evaluate age-related alterations of the melanopsin system and circadian rhythms in P23H line 1 (P23H-1) rats, a rodent model of retinitis pigmentosa (RP). In homozygous P23H-1 rats and wild-type control rats from the same genetic background (Sprague–Dawley), body temperature and locomotor activity were continuously monitored at 10-min intervals for 7 days, once every 4–5 weeks, between 2 and 24 months of age, using a telemetry transmitter. The distribution and number of mRGCs were assessed in control rats at 12, 18, and 24 months of age and in P23H-1 rats aged 12, 18, 24, and 30 months by immunostaining whole-mount retinas with antibodies against melanopsin. The mean density of mRGCs in control rats showed no significant variations when evaluated at 12 and 18 months of age, and fell by approximately 56% between 18 and 24 months of age. Meanwhile, a significant decrease in the mean number of mRGCs was found in 18-month-old P23H-1 rats as compared to 18-month-old control rats (81% decrease). Parametric and non-parametric analyses of the records showed a gradual age-dependent weakening of body temperature and locomotor activity circadian rhythms robustness in both control and P23H-1 rats from 2 to 24 months of age. However, body temperature and locomotor activity circadian patterns were less robust throughout the experiment in P23H-1 as compared to control rats, with lower amplitude, weaker coupling strength to environmental zeitgebers and higher fragmentation of the rhythms. The present study shows that the degeneration of photoreceptors and inner retinal neurons, characteristic of RP, has age-related degenerative effects on the melanopsin system and is associated with weaker circadian patterns.  相似文献   
114.
线粒体是细胞内制造能量的细胞器,它还负责各种细胞信号的整合,参与协调多种复杂的细胞功能.线粒体是动态变化的,连续不断地进行分裂与融合,这是其功能维持和增殖遗传的关键.在过去20年中,参与线粒体分裂与融合的核心因子陆续被发现,它们在进化上高度保守,但是在形成分裂与融合复合物中的详细分子机制还有待于深入研究.线粒体分裂与融合的动态变化,是线粒体质量控制的重要组成部分,其动态平衡在细胞发育和稳态维持中起重要作用.线粒体动态变化失衡和功能失调,则会导致多种神经退行性疾病的发生.这些研究的发现为探索线粒体生物学及与疾病的关系开拓了令人振奋的新方向.  相似文献   
115.
慢性活动型EB病毒(Epstein Barr virus,EBV)感染(chronic active EBV infection,CAEBV)是一类EBV相关的T/NK淋巴细胞增殖性疾病(Epstein Barr virus-associated T/NK-cell lymphoproliferative diseases,EBV~+T/NK-cell LPD),以持续反复的类似传染性单核细胞增多症(infectious mononucleosis,IM)临床病征和EBV感染细胞的克隆性增殖为主要特征,在临床上具有较高的发病率和致死率.目前对于CAEBV与其他各类EBV相关的T/NK淋巴细胞增殖性疾病之间的界定以及致病机理的研究仍处于发展阶段,临床上对于该类疾病的治疗也无完全有效的手段.本文主要从EBV如何感染T/NK细胞、EBV相关的病毒学研究、机体自身遗传及免疫背景几方面,综述了目前对于CAEBV致病机理的研究进展,旨在为进一步研究提供思路和线索.  相似文献   
116.
117.
SUMOylation of proteins is an important regulatory element in modulating protein function and has been implicated in the pathogenesis of numerous human diseases such as cancers, neurodegenerative diseases, brain injuries, diabetes, and familial dilated cardiomyopathy. Growing evidence has pointed to a significant role of SUMO in kidney diseases such as DN, RCC, nephritis, AKI, hypertonic stress and nephrolithiasis. Recently, emerging studies in podocytes demonstrated that SUMO might have a protective role against podocyte apoptosis. However, the SUMO code responsible for beneficial outcome in the kidney remains to be decrypted. Our recent experiments have revealed that the expression of both SUMO and SUMOylated proteins is appreciably elevated in hypoxia‐induced tubular epithelial cells (TECs) as well as in the unilateral ureteric obstruction (UUO) mouse model, suggesting a role of SUMO in TECs injury and renal fibrosis. In this review, we attempt to decipher the SUMO code in the development of kidney diseases by summarizing the defined function of SUMO and looking forward to the potential role of SUMO in kidney diseases, especially in the pathology of renal fibrosis and CKD, with the goal of developing strategies that maximize correct interpretation in clinical therapy and prognosis.  相似文献   
118.
The Keap1‐Nrf2/ARE signaling pathway is an important defense system against exogenous and endogenous oxidative stress injury. The dysregulation of the signaling pathway is associated with many diseases, such as cancer, diabetes, and respiratory diseases. Over the years, a wide range of natural products has provided sufficient resources for the discovery of potential therapeutic drugs. Among them, polyphenols possess Nrf2 activation, not only inhibit the production of ROS, inhibit Keap1‐Nrf2 protein–protein interaction, but also degrade Keap1 and regulate the Nrf2 related pathway. In fact, with the continuous improvement of natural polyphenols separation and purification technology and further studies on the Keap1‐Nrf2 molecular mechanism, more and more natural polyphenols monomer components of Nrf2 activators have been gradually discovered. In this view, we summarize the research status of natural polyphenols that have been found with apparent Nrf2 activation and their action modes. On the whole, this review may guide the design of novel Keap1‐Nrf2 activator.  相似文献   
119.
To prevent vaccine‐associated paralytic poliomyelitis, WHO recommended withdrawal of Oral Polio Vaccine (Serotype‐2) and a single dose of Inactivated Poliovirus Vaccine (IPV). IPV however is expensive, requires cold chain, injections and offers limited intestinal mucosal immunity, essential to prevent polio reinfection in countries with open sewer system. To date, there is no virus‐free and cold chain‐free polio vaccine capable of inducing robust mucosal immunity. We report here a novel low‐cost, cold chain/poliovirus‐free, booster vaccine using poliovirus capsid protein (VP1, conserved in all serotypes) fused with cholera non‐toxic B subunit (CTB) expressed in lettuce chloroplasts. PCR using unique primer sets confirmed site‐specific integration of CTB‐VP1 transgene cassettes. Absence of the native chloroplast genome in Southern blots confirmed homoplasmy. Codon optimization of the VP1 coding sequence enhanced its expression 9–15‐fold in chloroplasts. GM1‐ganglioside receptor‐binding ELISA confirmed pentamer assembly of CTB‐VP1 fusion protein, fulfilling a key requirement for oral antigen delivery through gut epithelium. Transmission Electron Microscope images and hydrodynamic radius analysis confirmed VP1‐VLPs of 22.3 nm size. Mice primed with IPV and boosted three times with lyophilized plant cells expressing CTB‐VP1co, formulated with plant‐derived oral adjuvants, enhanced VP1‐specific IgG1, VP1‐IgA titres and neutralization (80%–100% seropositivity of Sabin‐1, 2, 3). In contrast, IPV single dose resulted in <50% VP1‐IgG1 and negligible VP1‐IgA titres, poor neutralization and seropositivity (<20%, <40% Sabin 1,2). Mice orally boosted with CTB‐VP1co, without IPV priming, failed to produce any protective neutralizing antibody. Because global population is receiving IPV single dose, booster vaccine free of poliovirus or cold chain offers a timely low‐cost solution to eradicate polio.  相似文献   
120.
As Romanians prepared to celebrate 100 years of the '‘Great Unification of 1918?' which united all provinces into one Romania, the 12th Central and Eastern European Proteomic Conference (CEEPC) jointly with the 39th Anniversary of the Institute of Cellular Biology and Pathology '‘N. Simionescu’' (ICBP-NS), held their inaugural meeting at the Romanian Academy in Bucharest – a national forum of highest scientific recognition. With an exciting theme entitled, ‘Advances in Proteomics and Progress in Precision Medicine’, delegates gathered to debate Precision medicine’s revolution in diagnosis and treatment, which now accounts for predictive, preventative, and targeted treatment strategies with informed decisions according to individual’s unique clinical, molecular and genetic profile. Proteomics has a pivotal role to play in furthering precision health and medicine for the benefit of mankind. To this end, CEEPC continues to drive advances in proteomics, metabolomics, and diseases as well as raising awareness of pressing global humanitarian and health-care issues including mental health diseases, aging, chronic diseases, global epidemics and environmental issues. Today, CEEPC is a well-recognized major annual conference with a focused vision and a highly valued ideology as it continues to propagate scientific, medical and proteomic collaborations whilst expanding as more Eastern European countries prepare to join.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号