首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   475篇
  免费   49篇
  国内免费   14篇
  2024年   5篇
  2023年   24篇
  2022年   44篇
  2021年   67篇
  2020年   45篇
  2019年   23篇
  2018年   23篇
  2017年   14篇
  2016年   19篇
  2015年   16篇
  2014年   21篇
  2013年   19篇
  2012年   13篇
  2011年   21篇
  2010年   8篇
  2009年   20篇
  2008年   21篇
  2007年   26篇
  2006年   15篇
  2005年   12篇
  2004年   12篇
  2003年   6篇
  2002年   9篇
  2001年   3篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1975年   1篇
排序方式: 共有538条查询结果,搜索用时 15 毫秒
101.
PurposeAmong the different available methods for synthetic CT generation from MR images for the task of MR-guided radiation planning, the deep learning algorithms have and do outperform their conventional counterparts. In this study, we investigated the performance of some most popular deep learning architectures including eCNN, U-Net, GAN, V-Net, and Res-Net for the task of sCT generation. As a baseline, an atlas-based method is implemented to which the results of the deep learning-based model are compared.MethodsA dataset consisting of 20 co-registered MR-CT pairs of the male pelvis is applied to assess the different sCT production methods' performance. The mean error (ME), mean absolute error (MAE), Pearson correlation coefficient (PCC), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) metrics were computed between the estimated sCT and the ground truth (reference) CT images.ResultsThe visual inspection revealed that the sCTs produced by eCNN, V-Net, and ResNet, unlike the other methods, were less noisy and greatly resemble the ground truth CT image. In the whole pelvis region, the eCNN yielded the lowest MAE (26.03 ± 8.85 HU) and ME (0.82 ± 7.06 HU), and the highest PCC metrics were yielded by the eCNN (0.93 ± 0.05) and ResNet (0.91 ± 0.02) methods. The ResNet model had the highest PSNR of 29.38 ± 1.75 among all models. In terms of the Dice similarity coefficient, the eCNN method revealed superior performance in major tissue identification (air, bone, and soft tissue).ConclusionsAll in all, the eCNN and ResNet deep learning methods revealed acceptable performance with clinically tolerable quantification errors.  相似文献   
102.
Hydrolytic enzymatic activity in deep-sea sediments   总被引:5,自引:0,他引:5  
Abstract Hydrolytic activities of five enzymes were measured in deep-sea sediment cores at three stations under in situ temperature and pressure in the NE-Atlantic in March/April and July/August 1992. Generally, activity profiles declined vertically in the upper 10 cm of the cores. Experiments under in situ pressure were not significantly different from measurements under surface conditions. The ranking of potential activity rates in the top sediment horizon was: aminopeptidase > esterase > chitobiase > β-glucosidase > α-glucosidase with ratios of 687/174/11/3/1. This is similar to ratios obtained in marine aggregates from the upper mixed layer, thus supporting the idea of pelagic-benthic coupling in the open ocean. The vertical activity profiles show that the biochemical composition, and thereby the nutritive quality of the degradable material, changed with depth in the sediment cores. About 518 mg carbon was potentially mobilized in the 0–1 cm sediment horizon per square meter per day. This contrasts with the input of particulate organic carbon to the sea floor in this area of only 2.74 mg C m2 d−1, determined by sediment traps, which indicates that the deep-sea benthic community can rapidly utilize sedimenting particulate organic material and highlights the importance of extracellular enzyme activity in the sediment biogeochemical loop.  相似文献   
103.
Deep tissue pressure ulcers, a serious clinical challenge originating in the muscle layer, are hardly detectable at the beginning. The challenge apparently occurs in aged subjects more frequently. As the ulcer propagates to the skin surface, it becomes very difficult to manage and can lead to fatal complications. Preventive measures are thus highly desirable. Although the complex pathological mechanisms have not been fully understood, prolonged and excessive physical challenges and oxidative stress are believed to be involved in the ulcer development. Previous reports have demonstrated that oxidative stress could compromise the mechanical properties of muscle cells, making them easier to be damaged when physical challenges are introduced. In this study, we used senescence accelerated (SAMP8) mice and its control breed (SAMR1) to examine the protective effects of intermittent vibration on aged and control muscle tissues during prolonged epidermal compression under 100 mmHg for 6 h. Results showed that an application of 35 Hz, 0.25 g intermittent vibration during compression decreased the compression-induced muscle breakdown in SAMP8 mice, as indicated histologically in terms of number of interstitial nuclei. The fact that no significant difference in muscle damage could be established in the corresponding groups in SAMR1 mice suggests that SAMR1 mice could better accommodate the compression insult than SAMP8 mice. Compression-induced oxidative damage was successfully curbed using intermittent vibration in SAMP8 mice, as indicated by 8-OHdG. A possible explanation is that the anti-oxidative defense could be maintained with intermittent vibration during compression. This was supported by the expression level of PGC-1-alpha, catalase, Gpx-1 and SOD1. Our data suggested intermittent vibration could serve as a preventive measure for deep tissue ulcer, particularly in aged subjects.  相似文献   
104.
《IRBM》2022,43(5):422-433
BackgroundElectrocardiogram (ECG) is a method of recording the electrical activity of the heart and it provides a diagnostic means for heart-related diseases. Arrhythmia is any irregularity of the heartbeat that causes an abnormality in the heart rhythm. Early detection of arrhythmia has great importance to prevent many diseases. Manual analysis of ECG recordings is not practical for quickly identifying arrhythmias that may cause sudden deaths. Hence, many studies have been presented to develop computer-aided-diagnosis (CAD) systems to automatically identify arrhythmias.MethodsThis paper proposes a novel deep learning approach to identify arrhythmias in ECG signals. The proposed approach identifies arrhythmia classes using Convolutional Neural Network (CNN) trained by two-dimensional (2D) ECG beat images. Firstly, ECG signals, which consist of 5 different arrhythmias, are segmented into heartbeats which are transformed into 2D grayscale images. Afterward, the images are used as input for training a new CNN architecture to classify heartbeats.ResultsThe experimental results show that the classification performance of the proposed approach reaches an overall accuracy of 99.7%, sensitivity of 99.7%, and specificity of 99.22% in the classification of five different ECG arrhythmias. Further, the proposed CNN architecture is compared to other popular CNN architectures such as LeNet and ResNet-50 to evaluate the performance of the study.ConclusionsTest results demonstrate that the deep network trained by ECG images provides outstanding classification performance of arrhythmic ECG signals and outperforms similar network architectures. Moreover, the proposed method has lower computational costs compared to existing methods and is more suitable for mobile device-based diagnosis systems as it does not involve any complex preprocessing process. Hence, the proposed approach provides a simple and robust automatic cardiac arrhythmia detection scheme for the classification of ECG arrhythmias.  相似文献   
105.
《IRBM》2022,43(1):49-61
Background and objectiveBreast cancer, the most intrusive form of cancer affecting women globally. Next to lung cancer, breast cancer is the one that provides a greater number of cancer deaths among women. In recent times, several intelligent methodologies were come into existence for building an effective detection and classification of such noxious type of cancer. For further improving the rate of early diagnosis and for increasing the life span of victims, optimistic light of research is essential in breast cancer classification. Accordingly, a new customized method of integrating the concept of deep learning with the extreme learning machine (ELM), which is optimized using a simple crow-search algorithm (ICS-ELM). Thus, to enhance the state-of-the-art workings, an improved deep feature-based crow-search optimized extreme learning machine is proposed for addressing the health-care problem. The paper pours a light-of-research on detecting the input mammograms as either normal or abnormal. Subsequently, it focuses on further classifying the type of abnormal severities i.e., benign type or malignant.Materials and methodsThe digital mammograms for this work are taken from the Curated Breast Imaging Subset of DDSM (CBIS-DDSM), Mammographic Image Analysis Society (MIAS), and INbreast datasets. Herein, the work employs 570 digital mammograms (250 normal, 200 benign and 120 malignant cases) from CBIS-DDSM dataset, 322 digital mammograms (207 normal, 64 benign and 51 malignant cases) from MIAS database and 179 full-field digital mammograms (66 normal, 56 benign and 57 malignant cases) from INbreast dataset for its evaluation. The work utilizes ResNet-18 based deep extracted features with proposed Improved Crow-Search Optimized Extreme Learning Machine (ICS-ELM) algorithm.ResultsThe proposed work is finally compared with the existing Support Vector Machines (RBF kernel), ELM, particle swarm optimization (PSO) optimized ELM, and crow-search optimized ELM, where the maximum overall classification accuracy is obtained for the proposed method with 97.193% for DDSM, 98.137% for MIAS and 98.266% for INbreast datasets, respectively.ConclusionThe obtained results reveal that the proposed Computer-Aided-Diagnosis (CAD) tool is robust for the automatic detection and classification of breast cancer.  相似文献   
106.
《IRBM》2022,43(5):405-413
PurposeLeukaemia is diagnosed conventionally by observing the peripheral blood and bone marrow smear using a microscope and with the help of advanced laboratory tests. Image processing-based methods, which are simple, fast, and cheap, can be used to detect and classify leukemic cells by processing and analysing images of microscopic smear. The proposed study aims to classify Acute Lymphoblastic Leukaemia (ALL) by Deep Learning (DL) based techniques.ProceduresThe study used Deep Convolutional Neural Networks (DNNs) to classify ALL according to WHO classification scheme without using any image segmentation and feature extraction that involves intense computations. Images from an online image bank of American Society of Haematology (ASH) were used for the classification.FindingsA classification accuracy of 94.12% is achieved by the study in isolating the B-cell and T-cell ALL images using a pretrained CNN AlexNet as well as LeukNet, a custom-made deep learning network designed by the proposed work. The study also compared the classification performances using three different training algorithms.ConclusionsThe paper detailed the use of DNNs to classify ALL, without using any image segmentation and feature extraction techniques. Classification of ALL into subtypes according to the WHO classification scheme using image processing techniques is not available in literature to the best of the knowledge of the authors. The present study considered the classification of ALL only, and detection of other types of leukemic images can be attempted in future research.  相似文献   
107.
《IRBM》2022,43(4):251-258
ObjectivesEsophageal Cancer is the sixth most common cancer with a high fatality rate. Early prognosis of esophageal abnormalities can improve the survival rate of the patients. The sequence of the progress of the esophageal cancer is from esophagitis to non-dysplasia Barrett's esophagus to dysplasia Barrett's esophagus to esophageal adenocarcinoma (EAC). Many studies revealed a 5-fold increase in EAC patients diagnosed with esophagitis, and those diagnosed with Barrett's esophagus have a greater risk of EAC.Material and methodsConvolutional Neural Network (CNN) with efficient feature extractors enable better prognosis of the pre cancerous stage, Barrett's esophagus and esophagitis. The transfer learning techniques with CNN can extract more relevant features for the automated classification of Barrett's esophagus and esophagitis. This paper presents a study on the classification of the esophagitis and Barrett's esophagus (BE) using Deep Convolution Neural Networks (DCNN).ResultsIn the first experiment, the DCNN models perform as a feature extractor, and standard classifiers do the classification. The performance analysis shows that the CNN model ResNet50 with Support Vector Machine (SVM) has an accuracy of 93.5%, recall 93.5%, precision 93.4%, f score 93.5%, AUC 89.8%. In the second experiment, the DCNN classification models perform the classification with Transfer Learning and fine-tuning. The ResNet50 model has improved accuracy of 94.46%, precision 94.46%, f score 94.46%, AUC 96.20%.ConclusionThe ResNet50 model with transfer learning and fine-tuning gives a better performance than the ResNet50 model with SVM classifier. Our experiments show that the DCNN is effective for diagnosing EAC, both as feature extractors and classification models with transfer learning and fine-tuning.  相似文献   
108.
109.
110.
Protein-protein interactions (PPIs) form the basis of a myriad of biological pathways and mechanism, such as the formation of protein complexes or the components of signaling cascades. Here, we reviewed experimental methods for identifying PPI pairs, including yeast two-hybrid (Y2H), mass spectrometry (MS), co-localization, and co-immunoprecipitation. Furthermore, a range of computational methods leveraging biochemical properties, evolution history, protein structures and more have enabled identification of additional PPIs. Given the wealth of known PPIs, we reviewed important network methods to construct and analyze networks of PPIs. These methods aid biological discovery through identifying hub genes and dynamic changes in the network, and have been thoroughly applied in various fields of biological research. Lastly, we discussed the challenges and future direction of research utilizing the power of PPI networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号