首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   91篇
  国内免费   12篇
  733篇
  2024年   1篇
  2023年   18篇
  2022年   21篇
  2021年   38篇
  2020年   23篇
  2019年   31篇
  2018年   32篇
  2017年   29篇
  2016年   30篇
  2015年   27篇
  2014年   47篇
  2013年   45篇
  2012年   37篇
  2011年   39篇
  2010年   39篇
  2009年   27篇
  2008年   33篇
  2007年   34篇
  2006年   22篇
  2005年   13篇
  2004年   18篇
  2003年   17篇
  2002年   17篇
  2001年   15篇
  2000年   12篇
  1999年   7篇
  1998年   14篇
  1997年   7篇
  1996年   12篇
  1995年   4篇
  1994年   5篇
  1993年   7篇
  1992年   5篇
  1988年   2篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
排序方式: 共有733条查询结果,搜索用时 0 毫秒
81.
Hu Z  Zhang J  Zhang Q 《Autophagy》2011,7(12):1514-1527
The implications of autophagy-related genes in serious neural degenerative diseases have been well documented. However, the functions and regulation of the family genes in embryonic development remain to be rigorously studied. Here, we report on for the first time the important role of atg5 gene in zebrafish neurogenesis and organogenesis as evidenced by the spatiotemporal expression pattern and functional analysis. Using morpholino oligo knockdown and mRNA overexpression, we demonstrated that zebrafish atg5 is required for normal morphogenesis of brain regionalization and body plan as well as for expression regulation of neural gene markers: gli1, huC, nkx2.2, pink1, β-synuclein, xb51 and zic1. We further demonstrated that ATG5 protein is involved in autophagy by LC3-II/LC3I ratio and rapamycin-induction experiments, and that ATG5 is capable of regulating expression of itself gene in the manner of a feedback inhibition loop. In addition, we found that expression of another autophagy-related gene, atg12, is maintained at a higher constant level like a housekeeping gene. This indicates that the formation of the ATG12–ATG5 conjugate may be dependent on ATG5 protein generation and its splicing, rather than on ATG12 protein in zebrafish. Importantly, in the present study, we provide a mechanistic insight into the regulation and functional roles of atg5 in development of zebrafish nervous system.  相似文献   
82.
83.
1. Whereas much progress has been made in the treatment of depression, the exact pathogenetic mechanisms of the disorder are still poorly understood. It has been proposed that one possible mechanism could be a decrease in adult hippocampal neurogenesis.2. The olfactory bulbectomy (OB) in rats is widely accepted as an animal model of depression. In the present study, we investigated whether hippocampal neurogenesis is affected by an OB, and whether chronic citalopram, a serotonin selective reuptake inhibitor, counteracts OB-induced impairment of neurogenesis.3. Our study shows that OB decreases proliferation of the neuronal precursors in the dentate gyrus and retards their differentiation into mature granule neurons. In OB rats, repeated administration of citalopram restores reduced proliferative activity and enhances the differentiation of precursors into mature calbindin-positive neurons.4. The obtained data demonstrate that a citalopram-induced increase in neurogenesis in OB rats could be one possible mechanism by which antidepressants alleviate OB-induced depressive-like behavior.  相似文献   
84.
Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer's disease, Parkinson's disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. One of the biggest concerns within gene-based therapy is the delivery of the therapeutic microRNAs to the intended place, which is obligated to surpass the biological barriers without undergoing degradation in the bloodstream or renal excretion. Hence, the delivery of modified and unmodified miRNA molecules using excellent vehicles is required. In this light, mesenchymal stem cells (MSCs) have attracted increasing attention. The MSCs can be genetically modified to express or overexpress a particular microRNA aimed with promote neurogenesis and neuroprotection. The current review has focused on the therapeutic capabilities of microRNAs-overexpressing MSCs to ameliorate functional deficits in neurological conditions.  相似文献   
85.
Long non-coding RNAs (lncRNAs) are a numerous class of newly discovered genes in the human genome, which have been proposed to be key regulators of biological processes, including stem cell pluripotency and neurogenesis. However, at present very little functional characterization of lncRNAs in human differentiation has been carried out. In the present study, we address this using human embryonic stem cells (hESCs) as a paradigm for pluripotency and neuronal differentiation. With a newly developed method, hESCs were robustly and efficiently differentiated into neurons, and we profiled the expression of thousands of lncRNAs using a custom-designed microarray. Some hESC-specific lncRNAs involved in pluripotency maintenance were identified, and shown to physically interact with SOX2, and PRC2 complex component, SUZ12. Using a similar approach, we identified lncRNAs required for neurogenesis. Knockdown studies indicated that loss of any of these lncRNAs blocked neurogenesis, and immunoprecipitation studies revealed physical association with REST and SUZ12. This study indicates that lncRNAs are important regulators of pluripotency and neurogenesis, and represents important evidence for an indispensable role of lncRNAs in human brain development.  相似文献   
86.
87.
A long‐held dogma in comparative neurobiology has been that the number of neurons under a given area of cortical surface is constant. As such, the attention of those seeking to understand the genetic basis of brain evolution has focused on genes with functions in the lateral expansion of the developing cerebral cortex. However, new data suggest that cortical cytoarchitecture is not constant across primates, raising the possibility that changes in radial cortical development played a role in primate brain evolution. We present the first analysis of a gene with functions relevant to this dimension of brain evolution. We show that NIN, a gene necessary for maintaining asymmetric, neurogenic divisions of radial glial cells (RGCs), evolved adaptively during anthropoid evolution. We explored how this selection relates to neural phenotypes and find a significant association between selection on NIN and neonatal brain size in catarrhines. Our analyses suggest a relationship with prenatal neurogenesis and identify the human data point as an outlier, possibly explained by postnatal changes in development on the human lineage. A similar pattern is found in platyrrhines, but the highly encephalized genus Cebus departs from the general trend. We further show that the evolution of NIN may be associated with variation in neuron number not explained by increases in surface area, a result consistent with NIN's role in neurogenic divisions of RGCs. Our combined results suggest a role for NIN in the evolution of cortical development.  相似文献   
88.
Understanding the mechanisms that regulate neurogenesis is a prerequisite for brain repair approaches based on neuronal precursor cells. One important regulator of postnatal neurogenesis is polysialic acid (polySia), a post-translational modification of the neural cell adhesion molecule NCAM. In the present study, we investigated the role of polySia in differentiation of neuronal precursors isolated from the subventricular zone of early postnatal mice. Removal of polySia promoted neurite induction and selectively enhanced maturation into a calretinin-positive phenotype. Expression of calbindin and Pax6, indicative for other lineages of olfactory bulb interneurons, were not affected. A decrease in the number of TUNEL-positive cells indicated that cell survival was slightly improved by removing polySia. Time lapse imaging revealed the absence of chain migration and low cell motility, in the presence and absence of polySia. The changes in survival and differentiation, therefore, could be dissected from the well-known function of polySia as a promoter of precursor migration. The differentiation response was mimicked by exposure of cells to soluble or substrate-bound NCAM and prevented by the C3d-peptide, a synthetic ligand blocking NCAM interactions. Moreover, a higher degree of differentiation was observed in cultures from polysialyltransferase-depleted mice and after NCAM exposure of precursors from NCAM-knockout mice demonstrating that the NCAM function is mediated via heterophilic binding partners. In conclusion, these data reveal that polySia controls instructive NCAM signals, which direct the differentiation of subventricular zone-derived precursors towards the calretinin-positive phenotype of olfactory bulb interneurons.  相似文献   
89.
Newborn cells of the adult dentate gyrus in the hippocampus are characterized by their abundant expression of polysialic acid (PSA), a carbohydrate attached to the neural cell adhesion molecule (NCAM). PSA+ newborn cells of the dentate gyrus form clusters with proliferating neural progenitor cells, migrate away from these clusters, and terminally differentiate. To identify the roles of PSA in the development of adult progenitors of the dentate gyrus, we injected endoneuraminidase N (endoN) into the hippocampus of adult rats to specifically cleave PSA from NCAM. Two days later, we administered the mitotic marker, 5-bromo-2'-deoxyuridine (BrdU). Three days after BrdU injection, BrdU+ cells were found inside and outside the clusters of newborn cells. In endoN-treated animals, the total number of BrdU+ cells was not changed but significantly more BrdU+ cells were present within clusters, suggesting that PSA normally facilitates the migration of progenitors away from the clusters. Seven days post-BrdU injection, endoN-treated animals had significantly more BrdU+ cells which were also positive for the mature neuronal nuclear marker NeuN compared with controls, indicating that the loss of PSA from progenitor cells increases neuronal differentiation. This report is the first demonstration that PSA is involved in controlling the spatio-temporal neuronal maturation of adult hippocampal progenitors in the normal brain. In vitro, the removal of PSA from adult-derived neural progenitors significantly enhanced neuronal differentiation, strengthening our in vivo findings and indicating that PSA removal on isolated progenitor cells, apart from a complex in vivo environment, induces neuronal maturation.  相似文献   
90.
The hypothalamus of the adult ring dove contains acoustic units that respond to species‐specific coo vocalization. Loss of nest coo leads to unsuccessful breeding. However, the recovery of nest coo in some doves suggests that these units are capable of self‐renewal. We have previously shown that lesioning the hypothalamus generates the addition of new neurons at the lesioned area. In this study, we sought to determine whether lesion‐induced new neurons are involved in the recovery of coo‐responsive units. We systematically recorded electrical activity in the ventromedial nucleus (VMN) of the hypothalamus, before and after lesion, for varying periods up to 3 months. Recordings were made when the birds were at rest (spontaneous discharge) and when the birds were exposed to acoustic stimulations (evoked discharge). Concurrently, the lesioned area was monitored for changes in cell types by using bromodeoxyuridine (BrdU) to label newly divided cells and NeuN to identify mature neurons. For 1 month after lesion, there was no sign of electrical activity, and only BrdU‐labeled cells were present. When the first electrical activity occurred, it displayed abnormal spontaneous bursting patterns. The mature discharge patterns (both spontaneous and evoked) occurred after detection of BrdU+/NeuN+ double‐labeled cells 2–3 months postlesion and were similar to those found in intact and sham‐lesioned birds. Double‐labeled cells bore morphologic characteristics of a neuron and were confirmed with z‐stack analysis using confocal laser scanning microscopy. Moreover, double‐labeled cells were not stained for glial fibrillary acidic protein (GFAP), suggesting that they were neurons. The number of coo‐responsive units was significantly correlated with that of BrdU+/NeuN+ cells. Furthermore, the marker for recording sites revealed that coo‐responsive units were colocalized with BrdU+/NeuN+ cells. Taken together, the evidence strongly suggests that lesion‐induced addition of new neurons promotes the functional recovery of the adult hypothalamus. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 197–213, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号