首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2954篇
  免费   169篇
  国内免费   216篇
  2024年   8篇
  2023年   28篇
  2022年   21篇
  2021年   53篇
  2020年   90篇
  2019年   89篇
  2018年   72篇
  2017年   92篇
  2016年   107篇
  2015年   89篇
  2014年   98篇
  2013年   248篇
  2012年   72篇
  2011年   100篇
  2010年   85篇
  2009年   217篇
  2008年   233篇
  2007年   219篇
  2006年   192篇
  2005年   141篇
  2004年   135篇
  2003年   139篇
  2002年   114篇
  2001年   78篇
  2000年   80篇
  1999年   50篇
  1998年   26篇
  1997年   63篇
  1996年   44篇
  1995年   33篇
  1994年   39篇
  1993年   37篇
  1992年   29篇
  1991年   36篇
  1990年   27篇
  1989年   23篇
  1988年   20篇
  1987年   18篇
  1986年   14篇
  1985年   9篇
  1984年   21篇
  1983年   7篇
  1982年   8篇
  1981年   6篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1974年   3篇
  1973年   2篇
排序方式: 共有3339条查询结果,搜索用时 218 毫秒
81.
Wood-pastures are fragile ecosystems because they were formed by, and depend on specific, low-intensity multifunctional management. Although their ecological and cultural significance is high, wood-pastures are rapidly deteriorating all over Europe, mainly due to changing land use. We still lack a basic understanding of the ecological value of wood-pastures, and in which features they differ from other landscape elements. In this paper we investigated the ecological value of wood-pastures for passerine birds by (i) comparing bird assemblages of wood-pastures with those of closed forests and open pastures and (ii) exploring the relationships between variables describing wood-pastures and species traits of the bird assemblages. Our study region (Southern Transylvania, Romania) provides a unique opportunity to understand the importance of a traditional cultural and ecological environment for many different organisms. Wood-pastures had a higher overall number of bird species, and a higher spatial turnover in bird community composition than closed forests and open pastures. We found significant associations between bird species traits and habitat structural elements in wood-pastures such as large trees, oak- and pear trees and shrubs. Our findings suggest that traditional wood-pastures in Southern Transylvania have distinct and rich passerine bird communities. This richness is inextricably linked to the multifunctional, low-intensity land use traditionally applied in the wood-pastures that promotes high niche diversity. For effective conservation of the biodiversity of wood-pastures, a detailed understanding is needed of how different management regimes may influence the key structural elements of wood-pastures relevant for biodiversity and these should be protected.  相似文献   
82.
The paratabulate calcareous cyst of Calciodinellum operosum Deflandre was recorded in a sediment trap sample collected in the Bay of Naples (Tyrrhenian Sea, Italy). The germination of this resting stage produced a phototrophic vegetative cell that had the typical plate pattern of a Scrippsiella species. The cyst morphotypes, observed in a clonal culture of this species, ranged from cysts with well-developed paratabulation to cysts in which the paratabulation was barely visible, to cysts covered by irregularly shaped crystals. The analysis of thin sections of the calcareous cysts using the polarized light microscope equipped with crossed nicols and a gypsum plate showed that the optical orientation of the calcite crystals was tangential in all the morphotypes examined. We suggest that the crystallographic method we describe might provide insights for calcareous cyst taxonomy and phylogeny .  相似文献   
83.
A new phenolic glucoside, acremonoside (1), along with two known compounds, F-11334 A2 and 2,2-dimethyl-2H-chromen-6-ol, were isolated from the sea fan-derived fungus Acremonium polychromum PSU-F125. The structure of 1 was elucidated by spectroscopic techniques, acid hydrolysis and X-ray crystallographic analysis. The isolated compounds were tested for antibacterial, antimalarial, antimycobacterial and cytotoxic activities.  相似文献   
84.
Connectivity of marine populations is shaped by complex interactions between biological and physical processes across the seascape. The influence of environmental features on the genetic structure of populations has key implications for the dynamics and persistence of populations, and an understanding of spatial scales and patterns of connectivity is crucial for management and conservation. This study employed a seascape genomics approach combining larval dispersal modeling and population genomic analysis using single nucleotide polymorphisms (SNPs) obtained from RADseq to examine environmental factors influencing patterns of genetic structure and connectivity for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Dispersal simulations reveal widespread but asymmetric larval dispersal influenced by persistent southward and westward surface circulation features in the Sulu Sea. Despite potential for widespread dispersal across the Sulu Sea, significant genetic differentiation was detected among eight populations based on 1,655 SNPs (FST = 0.0057, p < .001) and a subset of 1,643 putatively neutral SNP markers (FST = 0.0042, p < .001). Oceanography influences genetic structure, with redundancy analysis (RDA) indicating significant contribution of asymmetric ocean currents to neutral genetic variation (Radj2 = 0.133, p = .035). Genetic structure may also reflect demographic factors, with divergent populations characterized by low effective population sizes (N e < 50). Pronounced latitudinal genetic structure was recovered for loci putatively under selection (FST = 0.2390, p < .001), significantly correlated with sea surface temperature variabilities during peak spawning months for S. olivacea (Radj2 = 0.692–0.763; p < .050), suggesting putative signatures of selection and local adaptation to thermal clines. While oceanography and dispersal ability likely shape patterns of gene flow and genetic structure of S. olivacea across the Sulu Sea, the impacts of genetic drift and natural selection influenced by sea surface temperature also appear as likely drivers of population genetic structure. This study contributes to the growing body of literature documenting population genetic structure and local adaptation for highly dispersive marine species, and provides information useful for spatial management of the fishery resource.  相似文献   
85.
86.
Global climate change has already caused bottom temperatures of coastal marine ecosystems to increase worldwide. These ecosystems face many pressures, of which fishing is one of the most important. While consequences of global warming on commercial species are studied extensively, the importance of the increase in bottom temperature and of variation in fishing effort is more rarely considered together in these exploited ecosystems. Using a 17 year time series from an international bottom trawl survey, we investigated covariations of an entire demersal ecosystem (101 taxa) with the environment in the Celtic Sea. Our results showed that over the past two decades, biotic communities in the Celtic Sea were likely controlled more by environmental variables than fisheries, probably due to its long history of exploitation. At the scale of the entire zone, relations between taxa and the environment remained stable over the years, but at a local scale, in the center of the Celtic Sea, dynamics were probably driven by interannual variation in temperature. Fishing was an important factor structuring species assemblages at the beginning of the time series (2000) but decreased in importance after 2009. This was most likely caused by a change in spatial distribution of fishing effort, following a change in targeted taxa from nephrops to deeper water anglerfish that did not covary with fishing effort. Increasing bottom temperatures could induce additional changes in the coming years, notably in the cold‐water commercial species cod, hake, nephrops, and American plaice. We showed that analyzing covariation is an effective way to screen a large number of taxa and highlight those that may be most susceptible to future simultaneous increases in temperature and changes in exploitation pattern by fisheries. This information can be particularly relevant for ecosystem assessments.  相似文献   
87.
The marine microbiome is a complex and least-understood habitat, which play a significant role in global biogeochemical cycles. The present study reported the culture-independent assessment of microbial diversity from the Arabian Sea (AS) sediments (from Gujarat to Malabar; at 30 m depth) by using metagenome sequence analysis. Our results elucidated that bacterial communities in the Malabar coastal region are highly diverse than the Gujarat coast. Moreover, Statistical analysis (Spearman rank correlation) showed a significant correlation co-efficient value (r = P < 0.001) between microbial communities and physicochemical parameters (salinity and dissolved oxygen) in the water column. A total of 39 bacterial phyla were recorded from the eastern side of AS, of which six phyla Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, Firmicutes, and Planctomycetes were found to be the most dominant group. The most dominant genus from Valapad region (Malabar Coast) was found to be Halomonas sp., while other regions were dominated with Psychrobacter pulmonis. The subsequent Principal Coordinate Analysis (PCoA) showed 99.53% variance, which suggests that, highly distinct microbial communities at Valapad (Malabar Coast) sampling location than other sites. Moreover, the microbial metabolic activity analysis revealed the important functions of microbial communities in the AS are hydrocarbon degradation, polymer degradation, nutrient oxidation and sulphate reduction (biodegradation process). Further extended studies are needed to be carried out for better understanding the functional diversity of microbial communities from the marine sediments.  相似文献   
88.
Marine heatwaves have been observed worldwide and are expected to increase in both frequency and intensity due to climate change. Such events may cause ecosystem reconfigurations arising from species range contraction or redistribution, with ecological, economic and social implications. Macrophytes such as the brown seaweed Fucus vesiculosus and the seagrass Zostera marina are foundation species in many coastal ecosystems of the temperate northern hemisphere. Hence, their response to extreme events can potentially determine the fate of associated ecosystems. Macrophyte functioning is intimately linked to the maintenance of photosynthesis, growth and reproduction, and resistance against pathogens, epibionts and grazers. We investigated morphological, physiological, pathological and chemical defence responses of western Baltic Sea F. vesiculosus and Z. marina populations to simulated near‐natural marine heatwaves. Along with (a) the control, which constituted no heatwave but natural stochastic temperature variability (0HW), two treatments were applied: (b) two late‐spring heatwaves (June, July) followed by a summer heatwave (August; 3HW) and (c) a summer heatwave only (1HW). The 3HW treatment was applied to test whether preconditioning events can modulate the potential sensitivity to the summer heatwave. Despite the variety of responses measured in both species, only Z. marina growth was impaired by the accumulative heat stress imposed by the 3HW treatment. Photosynthetic rate, however, remained high after the last heatwave indicating potential for recovery. Only epibacterial abundance was significantly affected in F. vesiculosus. Hence both macrophytes, and in particular F. vesiculosus, seem to be fairly tolerant to short‐term marine heatwaves at least at the intensities applied in this experiment (up to 5°C above mean temperature over a period of 9 days). This may partly be due to the fact that F. vesiculosus grows in a highly variable environment, and may have a high phenotypic plasticity.  相似文献   
89.
On their migratory journeys, terrestrial birds can come across large inhospitable areas with limited opportunities to rest and refuel. Flight over these areas poses a risk especially when wind conditions en route are adverse, in which case inhospitable areas can act as an ecological barrier for terrestrial migrants. Thus, within the east-Atlantic flyway, the North Sea can function as an ecological barrier. The main aim of this study was to shed light on seasonal patterns of bird migration in the southern North Sea and determine whether departure decisions on nights of intense migration were related to increased wind assistance. We measured migration characteristics with a radar that was located 18 km off the NW Dutch coast and used simulation models to infer potential departure locations of birds on nights with intense nocturnal bird migration. We calculated headings, track directions, airspeeds, groundspeeds on weak and intense migration nights in both seasons and compared speeds between seasons. Moreover, we tested if departure decisions on intense migration nights were associated with supportive winds. Our results reveal that on the intense migration nights in spring, the mean heading was towards E, and birds departed predominantly from the UK. On intense migration nights in autumn, the majority of birds departed from Denmark, Germany and north of the Netherlands with the mean heading towards SW. Prevailing winds from WSW at departure were supportive of a direct crossing of the North Sea in spring. However, in autumn winds were generally not supportive, which is why many birds exploited positive wind assistance which occurred on intense migration nights. This implies that the seasonal wind regimes over the North Sea alter its migratory dynamics which is reflected in headings, timing and intensity of migration.  相似文献   
90.
Current approaches that compare spatial genetic structure of a given species and the dispersal of its mobile phase can detect a mismatch between both patterns mainly due to processes acting at different temporal scales. Genetic structure result from gene flow and other evolutionary and demographic processes over many generations, while dispersal predicted from the mobile phase often represents solely one generation on a single time-step. In this study, we present a spatial graph approach to landscape genetics that extends connectivity networks with a stepping-stone model to represent dispersal between suitable habitat patches over multiple generations. We illustrate the approach with the case of the striped red mullet Mullus surmuletus in the Mediterranean Sea. The genetic connectivity of M. surmuletus was not correlate with the estimated dispersal probability over one generation, but with the stepping-stone estimate of larval dispersal, revealing the temporal scale of connectivity across the Mediterranean Sea. Our results highlight the importance of considering multiple generations and different time scales when relating demographic and genetic connectivity. The spatial graph of genetic distances further untangles intra-population genetic structure revealing the Siculo-Tunisian Strait as an important corridor rather than a barrier for gene flow between the Western- and Eastern Mediterranean basins, and identifying Mediterranean islands as important stepping-stones for gene flow between continental populations. Our approach can be easily extended to other systems and environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号