首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1354篇
  免费   89篇
  国内免费   115篇
  1558篇
  2023年   21篇
  2022年   18篇
  2021年   39篇
  2020年   38篇
  2019年   49篇
  2018年   42篇
  2017年   31篇
  2016年   39篇
  2015年   56篇
  2014年   48篇
  2013年   87篇
  2012年   55篇
  2011年   70篇
  2010年   40篇
  2009年   51篇
  2008年   72篇
  2007年   82篇
  2006年   56篇
  2005年   48篇
  2004年   49篇
  2003年   38篇
  2002年   46篇
  2001年   34篇
  2000年   36篇
  1999年   30篇
  1998年   32篇
  1997年   30篇
  1996年   23篇
  1995年   15篇
  1994年   20篇
  1993年   23篇
  1992年   19篇
  1991年   12篇
  1990年   12篇
  1989年   9篇
  1988年   19篇
  1987年   10篇
  1986年   8篇
  1985年   18篇
  1984年   23篇
  1983年   13篇
  1982年   11篇
  1981年   13篇
  1980年   7篇
  1979年   20篇
  1978年   6篇
  1977年   9篇
  1976年   10篇
  1973年   4篇
  1972年   5篇
排序方式: 共有1558条查询结果,搜索用时 0 毫秒
21.
The oxidation of NADPH and NADH was studied in the light and in the dark using sonically derived membrane vesicles and osmotically shocked spheroplasts. These two types of cell-free membrane preparations mostly differ in that the cell and thylakoid membranes are scrambled in the former type and that they are more or less separated in the latter type of preparations. In the light, using both kinds of preparations, each of NADPH and NADH donates electrons via the plastoquinone-cytochrome bc redox complex (Qbc redox complex) to the thylakoid membrane-bound cytochrome c-553 preoxidized by a light flash and to methylviologen via Photosystem I. NADPH donates electrons to the thylakoid membrane via a weakly rotenone-sensitive dehydrogenase to a site that is situated beyond the 3(3′,4′-dichlorophenyl)-1,1-dimethylurea sensitive site and before plastoquinone. Ferredoxin and easily soluble cytoplasmic proteins are presumably not involved in light-mediated NADPH oxidation. Inhibitors of electron transfer at the Qbc redox complex as the dinitrophenylether of 2-iodo-4-nitrothymol, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone and 2-n-heptyl-4-hydroxy-quinone-N-oxide are effective, but antimycin A and KCN are not. The oxidation of NADH showed comparable sensitivity to these inhibitors. However, the oxidation of NADH is antimycin-A-sensitive regardless of the kind of membrane preparation used, indicating that in this case electrons are donated to a different site on the thylakoid membrane. In the dark, NADPH and NADH donate electrons at sites that behave similar to those of light-mediated oxidation, indicating that the initial steps of electron transfer are situated at the thylakoid membranes. However, NADPH oxidation is in some cases not sensitive to inhibitors active at the Qbc redox complex. It is concluded that O2 reduction takes place at two different sites, one partly developed in vitro, situated near the rotenone-sensitive NADPH dehydrogenase, and another, highly KCN-sensitive one, situated beyond the Qbc redox complex and used in vivo. The terminal oxygen-reducing step of NADPH and NADH oxidation in the dark showed a preparation-dependent sensitivity for KCN, more than 80% inhibition in sonically derived membrane vesicles and less than 30% inhibition in osmotically shocked spheroplasts. From this result we tentatively conclude that the highly KCN-sensitive oxidase is not necessarily located at the thylakoid membrane and could be located at the cytoplasmic membrane.  相似文献   
22.
The results of our present study indicate that 1 alpha, 25-dihydroxyvitamin D3[1 alpha, 25(OH)2D3] directly induces fusion of mouse alveolar macrophages without any participation of T-lymphocytes by a mechanism involving RNA and protein synthesis but not DNA synthesis. We have reported that 1 alpha, 25(OH)2D3 induces fusion of alveolar macrophages by a direct mechanism and by a spleen cell-mediated indirect mechanism [(1983) Proc. Natl. Acad. Sci. USA 80, 5583-5587]. Alveolar macrophages pretreated with or without anti-Thy 1.2 antibody and complement fused similarly when they were incubated with 1 alpha, 25(OH)2D3. The vitamin suppressed DNA synthesis, but it significantly enhanced RNA and protein synthesis. The 1 alpha, 25(OH)2D3-induced fusion was blocked by adding actinomycin D or cycloheximide, but not by hydroxyurea.  相似文献   
23.
Summary Pale eggs and partial cleavage are two mutations with a maternal effect that are found in the same family ofXenopus l. laevis. The pale eggs have animal hemispheres of a yellow to beige colour and give rise to normally pigmented tadpoles and frogs. The cells of pale embryos contain fewer melanosomes than those of controls. The partial cleavage eggs are characterized by an abnormality of cleavage visible from the eight-cell stage onwards, by abnormal yolk platelet distribution and abnormal cytological features. Cleaved, syncytial and uncleaved areas are observed in these eggs, which are lethal at the blastula stage.  相似文献   
24.
Flash excitation of isolated intact chloroplasts promoted absorbance transients corresponding to the electrochromic effect (P-518) and the α-bands of cytochrome b6 and cytochrome f. Under conditions supporting coupled cyclic electron flow, the oxidation of cytochrome b6 and the reduction of cytochrome f had relaxation half-times of 15 and 17 ms, respectively. Optimal poising of cyclic electron flow, achieved by addition of 0.1 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea, increased phosphorylation of endogenous ADP and prolonged these relaxation times. The presence of NH4Cl, or monensin plus NaCl, decreased the half-times for cytochrome relaxation to approximately 2 ms. Uncouplers also revealed the presence of a slow rise component in the electrochromic absorption shift, with formation half-time of about 2 ms. The inhibitors of cyclic phosphorylation antimycin and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone abolished the slow rise in the electrochromic shift and prolonged the uncoupled relaxation times of cytochromes b6 and f by factors of ten or more.These observations indicate that cytochrome b6, plastoquinone and cytochrome f participate in a coupled electron transport process responsible for cyclic phosphorylation in intact chloroplasts. Estimations of cyclic phosphorylation rates from 40 to 120 μmol ATP/mg chlorophyll per h suggest that this process can provide a substantial fraction of the ATP needed for CO2 fixation.  相似文献   
25.
In thylakoid membranes, several peptides of high MW are present which may interfere with the study of CP1's components. Modifying Cleveland's technique [7] for limited proteolysis, we have characterized the polypeptides found in the 60 kD region. Some may result from incomplete washing of the CF1 while others come from the CP1; indeed, this chlorophyll protein complex, which has a higher MW (above 100 kD), very often undergoes a dissociation into smaller components of about 60 KD MW.Analysis of the protein content of different preparations commonly used to obtain PSI reaction centre enriched fractions has been performed. The and subunits of CF1 are among the main contaminants of most of these preparations. A further purification step is described which can be applied to all these preparations, but numerous peptides are still present in the active fractions. It is most unlikely that all these polypeptides are required for the primary photochemical event, and this emphasizes the necessity to find a new simple method to purify PSI reaction centres.  相似文献   
26.
Summary Microtubules and 10 nm-filaments appear to be involved in the functions of the retinal pigment epithelium (RPE). The presence of microtubules in the RPE of light-adapted eyes, but not in dark-adapted eyes, suggests that they may be involved primarily in organelle movement. On the other hand, the random and constant presence of 10 nm-filaments within the basal portion of the PE implies a cytoskeletal role for these filaments.The authors thank their colleagues Pierre Couillard and Michel Anctil for helpful advice and criticism during the course of this study. Financial support was provided by the C.R.S.N.G. du Canada and the Ministère de l'Education du Québec (F.C.A.C.)  相似文献   
27.
Light absorption by two green seaweeds with similar photophysiology but different anatomies are compared: i) Ulva lactuca var. rigida (C. Ag.) Le Jolis, an optically translucent species of two cell layers both bearing chloroplasts; and, ii) Codium fragile subsp. tomentosoides (van Goor) Silva, an optically opaque species with a colorlelss medulla surrounded by a cortex of choloroplast-bearing utriclels. Thallus absorptance (fraction of incident light absorbed) was measured for various pigment contents. Absorptance by U. lactuca was dependent on pigment concentration in an exponential manner and never exceeded 0.6, whereas absorptance by C. fragile was independent of pigment concentration and always approached a balue of 1.0. Water in the medullary tissue of C. fragile is often of the utricles. The utricles appear to be “integrating spheres” enhancing the capture of incident light, aided by the wave-guide function of the thin peripheral layer of cytoplasm and a reflector function at their base. Photosynthitic performance for U. lactuca saturates at high light intensities and attenuates rapidly with decreasing intensities. In contrast, photosynthetic performance for C. fragile saturates at low light intensities and attenuates slowly with diminishing radiation. Extrapolated diel variation in photosynthesis shows that U. lactuca's anatomy is adaptive for high light intensity environments, whereas C. fragile's anatomy is adaptive for low light intensity environments. Both seaweeds fit into the ecological category of “fugitive” species, and compete in the Long Island Sound (Atlantic Ocean) rocky intertidal for free-space. Predictions are presented for relative species abundances along a monotonic gradient of light intensity.  相似文献   
28.
Whole cells and isolated chlorosomes (antenna complex) of the green photosynthetic bacterium Chloroflexus aurantiacus have been studied by absorption spectroscopy (77 K and room temperature), fluorescence spectroscopy, circular dichroism, linear dichroism and electron spin resonance spectroscopy. The chlorosome absorption spectrum has maxima at 450 (contributed by carotenoids and bacteriochlorophyll (BChl) a Soret), 742 (BChl c) and 792 nm (BChl a) with intensity ratios of 20:25. The fluorescence emission spectrum has peaks at 748 and 802 nm when excitation is into either the 742 or 450 nm absorption bands, respectively. Whole cells have fluorescence peaks identical to those in chlorosomes with the addition of a major peak observed at 867 nm. The CD spectrum of isolated chlorosomes has an asymmetric-derivative-shaped CD centered at 739 nm suggestive of exciton interaction at least on the level of dimers. Linear dichroism of oriented chlorosomes shows preferential absorption at 742 nm of light polarized parallel to the long axis of the chlorosome. This implies that the transition dipoles are also oriented more or less parallel to the long axis of the chlorosome. Treatment with ferricyanide results in the appearance of a 2.3 G wide ESR spectrum at g 2.002. Whole cells grown under different light conditions exhibit different fluorescence behavior when absorption is normalized at 742 nm. Cells grown under low light conditions have higher fluorescence intensity at 748 nm and lower intensity at 802 nm than cells grown under high light conditions. These results indicate that the BChl c in chlorosomes is highly organized, and transfers energy from BChl c (742 nm) to a connector of baseplate BChl B792 (BChl a) presumably located in the chlorosome baseplate adjacent to the cytoplasmic membrane.  相似文献   
29.
30.
Amoebae of the cellular slime mold Dictyostelium discoideum (strain AX2) produce a pigment with an absorption spectrum that closely resembles the action spectrum for phototaxis. The protein-pigment complex was isolated and purified by sucrose gradient centrifugation, fast protein liquid chromatography (FPLC) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE). It is tightly membrane-bound and the bulk of it is located in the mitochondrial membrane fraction, while a small part is located in the cytoplasmic membrane fraction, as indicated by marker enzyme tests (succinate dehydrogenase for mitochondria and alkaline phosphatase for the cytoplasmic membrane). It is speculated that the pigment bound to the cytoplasmic membrane acts as photoreceptor and that bound to the mitochondria operates as a shading pigment in the light direction perception mechanism of Dictyostelium amoebae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号