首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   613篇
  免费   24篇
  国内免费   18篇
  655篇
  2023年   6篇
  2022年   11篇
  2021年   13篇
  2020年   9篇
  2019年   13篇
  2018年   6篇
  2017年   6篇
  2016年   11篇
  2015年   14篇
  2014年   13篇
  2013年   30篇
  2012年   26篇
  2011年   18篇
  2010年   11篇
  2009年   32篇
  2008年   24篇
  2007年   27篇
  2006年   25篇
  2005年   21篇
  2004年   27篇
  2003年   25篇
  2002年   23篇
  2001年   17篇
  2000年   21篇
  1999年   18篇
  1998年   18篇
  1997年   25篇
  1996年   13篇
  1995年   11篇
  1994年   15篇
  1993年   6篇
  1992年   15篇
  1991年   20篇
  1990年   8篇
  1989年   12篇
  1988年   4篇
  1987年   10篇
  1986年   6篇
  1985年   6篇
  1984年   4篇
  1983年   5篇
  1982年   3篇
  1981年   7篇
  1980年   3篇
  1978年   5篇
  1976年   3篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1970年   2篇
排序方式: 共有655条查询结果,搜索用时 31 毫秒
21.
Traditionally, the termination of parasite epidemics has been attributed to ecological causes: namely, the depletion of susceptible hosts as a result of mortality or acquired immunity. Here, we suggest that epidemics can also end because of rapid host evolution. Focusing on a particular host–parasite system, Daphnia dentifera and its parasite Metschnikowia bicuspidata , we show that Daphnia from lakes with recent epidemics were more resistant to infection and had less variance in susceptibility than Daphnia from lakes without recent epidemics. However, our studies revealed little evidence for genetic variation in infectivity or virulence in Metschnikowia . Incorporating the observed genetic variation in host susceptibility into an epidemiological model parameterized for this system reveals that rapid evolution can explain the termination of epidemics on time scales matching what occurs in lake populations. Thus, not only does our study provide rare evidence for parasite-mediated selection in natural populations, it also suggests that rapid evolution has important effects on short-term host–parasite dynamics.  相似文献   
22.
Worldwide, urbanization leads to tremendous anthropogenic environmental alterations, causing strong selection pressures on populations of animals and plants. Although a key feature of urban areas is their higher temperature (“urban heat islands”), adaptive thermal evolution in organisms inhabiting urban areas has rarely been studied. We tested for evolution of a higher heat tolerance (CTMAX) in urban populations of the water flea Daphnia magna, a keystone grazer in freshwater ecosystems, by carrying out a common garden experiment at two temperatures (20°C and 24°C) with genotypes of 13 natural populations ordered along a well‐defined urbanization gradient. We also assessed body size and haemoglobin concentration to identify underlying physiological drivers of responses in CTMAX. We found a higher CTMAX in animals isolated from urban compared to rural habitats and in animals reared at higher temperatures. We also observed substantial genetic variation in thermal tolerance within populations. Overall, smaller animals were more heat tolerant. While urban animals mature at smaller size, the effect of urbanization on thermal tolerance is only in part caused by reductions in body size. Although urban Daphnia contained higher concentrations of haemoglobin, this did not contribute to their higher CTMAX. Our results provide evidence of adaptive thermal evolution to urbanization in the water flea Daphnia. In addition, our results show both evolutionary potential and adaptive plasticity in rural as well as urban Daphnia populations, facilitating responses to warming. Given the important ecological role of Daphnia in ponds and lakes, these adaptive responses likely impact food web dynamics, top‐down control of algae, water quality, and the socio‐economic value of urban ponds.  相似文献   
23.
Variation in eye size is ubiquitous across taxa. Increased eye size is correlated with improved vision and increased fitness via shifts in behavior. Tests of the drivers of eye size evolution have focused on macroevolutionary studies evaluating the importance of light availability. Predator‐induced mortality has recently been identified as a potential driver of eye size variation. Here, we tested the influence of increased predation by the fish predator, the alewife (Alosa pseudoharengus) on eye size evolution in waterfleas (Daphnia ambigua) from lakes in Connecticut. We quantified the relative eye size of Daphnia from lakes with and without alewife using wild‐caught and third‐generation laboratory reared specimens. This includes comparisons between lakes where alewife are present seasonally (anadromous) or permanently (landlocked). Wild‐caught specimens did not differ in eye size across all lakes. However, third‐generation lab reared Daphnia from lakes with alewife, irrespective of the form of alewife predation, exhibited significantly larger eyes than Daphnia from lakes without alewife. This genetically based increase in eye size may enhance the ability of Daphnia to detect predators. Alternatively, such shifts in eye size may be an indirect response to Daphnia aggregating at the bottom of lakes. To test these mechanisms, we collected Daphnia as a function of depth and found that eye size differed in Daphnia found at the surface versus the bottom of the water column between anadromous alewife and no alewife lakes. However, we found no evidence of Daphnia aggregating at the bottom of lakes. Such results indicate that the evolution of a larger eye may be explained by a connection between eyes and enhanced survival. We discuss the cause of the lack of concordance in eye size variation between our phenotypic and genetic specimens and the ultimate drivers of eye size.  相似文献   
24.
M. A. Leibold 《Oecologia》1991,86(4):510-520
Summary Two commonly coexisting species of Daphnia segregate by habitat in many stratified lakes. Daphnia pulicaria is mostly found in the hypolimnion whereas D. galeata mendotae undergoes diel vertical migration between the hypolimnion and the epilimnion. I examined how habitat segregation between these two potentially competing species might be affected by trophic interactions with their resources and predators by performing a field experiment in deep enclosures in which I manipulated fish predation, nutrient levels, and the density of epilimnetic Daphnia. The results of the experiment indicate that habitat use by D. pulicaria can be jointly regulated by competition for food from epilimnetic Daphnia and predation by fishes. Patterns of habitat segregation between the two Daphnia species were determined by predation by fish but not by nutrient levels: The removal of epilimnetic fish predators resulted in higher zooplankton and lower epilimnetic phytoplankton densities and allowed D. pulicaria to expand its habitat distribution into the epilimnion. In contrast, increased resource productivity resulted in higher densities of both Daphnia species but did not affect phytoplankton levels or habitat use by Daphnia. The two species exhibit a trade-off in their ability to exploit resources and their susceptibility to predation by fish. D. g. mendotae (the less susceptible species) may thus restrict D. pulicaria (the better resource exploiter) from the epilimnion when fish are common due to lower minimum resource requirements than those needed by D. pulicaria to offset the higher mortality rate imposed by selective epilimnetic fish predators. D. g. mendotae does not appear to have this effect in the absence of fish.  相似文献   
25.
Pulkkinen K  Ebert D 《Oecologia》2006,149(1):72-80
Predators have the potential to limit the spread of pathogens not only by selecting infected prey but also by shaping prey demographics. We tested this idea with an epidemiological experiment in which we simulated variable levels of size-selective predation on zooplankton hosts and monitored the persistence of host and parasite populations. In the absence of simulated predation, the virulent protozoan Caullerya mesnili frequently drove its host Daphnia galeata to extinction. Uninfected control populations showed lower extinction rates and higher average densities than infected populations in the absence of simulated predation (all of the latter went extinct or remained infected). With a weak removal rate of the largest hosts, the proportion of populations in which the parasite drove the host to extinction decreased, while the number of populations in which the host persisted and the parasite went extinct increased. Host-parasite coexistence was also observed in some cases. With intermediate levels of removal, most of the parasite populations went extinct, while the host populations persisted. With an even higher removal rate, Daphnia were driven to extinction as well. Thus, variation in one factor, size-selective mortality, resulted in four different patterns of population dynamics. Our results highlight the potential role of predation in shaping the epidemiology and community structure of host-parasite systems.  相似文献   
26.
1. Vertical transport of nutrients in sedimenting faecal material is greatly reduced by coprophageous organisms. Unfortunately, nearly all work on faecal production, sedimentation and coprophagy has dealt with copepods in marine ecosystems. Here, we report the first evidence of coprophagy in freshwater zooplankton from oligotrophic and eutrophic lakes. We used 14C‐labelled algae and faecal material to estimate the rates of algal clearance and coprophagy. 2. Measured feeding rates per individual on faecal material were similar (Daphnia pulex, D. rosea, Leptodiaptomus tyrelli) or even higher (D. lumholtzi) than filtering rates on phytoplankton. This finding does not necessarily implicate active selection of faeces over algae because: (i) we did not use the same food concentrations for faeces and algae, and (ii) grazers of slightly different sizes were used in each test. 3. Weight‐specific clearance rates of L. tyrelli and Holopedium gibberum on faecal matter (0.084–0.089 mL μg?1 h?1) were higher than in the daphniids (0.026 mL μg?1 h?1). 4. The data indicate that coprophagy in freshwater ecosystems is an important mechanism of nutrient recycling, and this process should be taken into account when studying nutrient fluxes within lakes and reservoirs.  相似文献   
27.
Primary production of phytoplankton and secondary production of a daphnid and a chaoborid were studied in a small eutrophic pond. The gross primary production of phytoplankton was 290 gC m−2 per 9 months during April–December. Regression analysis showed that the gross primary production was related to the incident solar radiation and the chlorophylla concentration and not to either total phosphorus or total inorganic nitrogen concentration. The mean chlorophylla concentration (14.2 mg m−3), however, was about half the expected value upon phosphorus loading of this pond. The mean zooplankton biomass was 1.60 g dry weight m−2, of whichDaphnia rosea and cyclopoid copepods amounted to 0.69 g dry weight m−2 and 0.61 g dry weight m−2, respectively. The production ofD. rosea was high during May–July and October and the level for the whole 9 months was 22.6 g dry weight m−2.Chaoborus flavicans produced 10 complete and one incomplete cohorts per year. Two consecutive cohorts overlapped during the growing season. The maximum density, the mean biomass, and the production were 19,100 m−2, 0.81 g dry weight m−2, and 11.7 g dry weight m−2yr−1, respectively. As no fish was present in this pond, the emerging biomass amounted to 69% of larval production. The production ofC. flavicans larvae was high in comparison with zooplankton production during August–September, when the larvae possibly fed not only on zooplankton but also algae.  相似文献   
28.
Prey capture rate (number of prey s−1) and the mode of feeding of Arctic charr Salvelinus alpinus were studied by performing foraging experiments with two sizes (1·1 and 1·8 mm) of Daphnia longispina prey. Arctic charr were particulate feeders at all densities tested. Adjusted for the effect of prey density, the capture rate showed a hump-shaped relationship with Arctic charr size for both sizes of D. longispina . Estimated attack rates ( a ) also tended to show a hump-shaped relationship with fish size. The estimated size-scaling exponent of the attack rate function, however, was relatively small, implying small changes in attack rate over fish sizes. Simultaneous estimations of a and handling time were used in combination with published data on fish metabolism and dry mass rations of prey to estimate maintenance resource density of prey as a function of Arctic charr mass. Maintenance resource densities increased monotonically with Arctic charr size, and rapidly as optimum fish size relative to attack rate on prey was passed.  相似文献   
29.
Norbert Rieder 《Hydrobiologia》1987,145(1):175-181
A group of nine sensory setae is found on the tip of the antennula ofDaphnia magna in both sexes. Inside a seta four dendrites are situated, each with one receptor cilium. The receptor cilia extend through a liquor space into the exterior part of the seta. The exterior part of the liquor space is divided from the interior part by a knob-like thickening of the innermost layer of the epicuticle, the basal bead. The basal bead narrows the liquor space and the receptor cilia. The interior part of the liquor space is surrounded by five sheath cells, the exterior part by a thin cuticle. In the exterior part the receptor cilia branch partly and reach a terminal pellet on the tip of the seta. The terminal pellet is a thickened part of the epicuticle. It is permeable to several dissolved substances. It is the exterior part of the receptor that projects over the tip of the antennula and seems to be the entire seta. During the premoult the fifth sheath cell builds up the articulation of the seta, the fourth the basal bead, and the third the shaft of the seta. The first sheath cell forms the cuticular sheath. The organ seems to be a chemoreceptor, but the adequate stimulus is as yet unknown.  相似文献   
30.
Accelerated molecular evolution in halophilic crustaceans   总被引:8,自引:0,他引:8  
In contrast to the stable ionic composition of the oceans, inland waters show striking diversity, possessing salt concentrations varying from I mM to 5 M. Although species diversity is highest in fresh water, some lineages have colonized hypersaline environments where they encounter elevated levels of both ultraviolet (UV) radiation and osmotic stress. This study compares rates of evolution in halophilic and freshwater taxa for two groups of microcrustaceans, anostracans and daphniids, from Australia and North America. The results establish that halophilic species show consistent rate acceleration, involving elevated levels of both insertion/deletion events and of nucleotide substitutions. The elevated pace of molecular evolution does not appear to be linked to selection or to other agents that are known to influence the supply rate of mutations, such as UV exposure, generation length, or shifts in metabolic rate. However, variance in ionic strength, which is known to have potent effects on DNA-protein interactions as well as on the structural properties of DNA and proteins, might account for the lowered fidelity of DNA replication in life from hypersaline settings. Regardless of its cause, the consistent rate acceleration in halophiles suggests that past efforts to employ sequence divergences to date events, such as the age of asexual lineages in Artemia, have resulted in serious overestimates. More generally, the results indicate that coordinated shifts in rates of molecular evolution may occur in lineages exposed to extreme environmental conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号