首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   15篇
  国内免费   2篇
  274篇
  2024年   1篇
  2023年   3篇
  2022年   6篇
  2021年   11篇
  2020年   5篇
  2019年   7篇
  2018年   6篇
  2017年   2篇
  2016年   6篇
  2015年   9篇
  2014年   15篇
  2013年   15篇
  2012年   7篇
  2011年   14篇
  2010年   6篇
  2009年   15篇
  2008年   12篇
  2007年   11篇
  2006年   12篇
  2005年   9篇
  2004年   12篇
  2003年   12篇
  2002年   10篇
  2001年   10篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
排序方式: 共有274条查询结果,搜索用时 0 毫秒
51.
Mutations in the rhodopsin gene are the most common cause of retinitis pigmentosa (RP) among human patients. The nature of the rhodopsin mutations has critical implications for the design of strategies for gene therapy. Nearly all rhodopsin mutations are dominant. Although dominance does not arise because of haploinsufficiency, it is unclear whether it is caused by gain-of-function or dominant-negative mutations. Current strategies for gene therapy have been devised to deal with toxic, gain-of-function mutations. However, analysis of results of transgenic and targeted expression of various rhodopsin genes in mice suggests that dominance may arise as a result of dominant-negative mutations. This has important consequences for gene therapy. The effects of dominant-negative mutations can be alleviated, in principle, by supplementation with additional wild-type rhodopsin. If added wild-type rhodopsin could slow retinal degeneration in human patients, as it does in mice, it would represent a valuable new strategy for gene therapy of RP caused by dominant rhodopsin mutations.  相似文献   
52.
53.
54.
55.
The rapid activation and feedback regulation of many G protein signaling cascades raises the possibility that the critical signaling proteins may be tightly coupled. Previous studies show that the PDZ domain containing protein INAD, which functions in Drosophila vision, coordinates a signaling complex by binding directly to the light-sensitive ion channel, TRP, and to phospholipase C (PLC). The INAD signaling complex also includes rhodopsin, protein kinase C (PKC), and calmodulin, though it is not known whether these proteins bind to INAD. In the current work, we show that rhodopsin, calmodulin, and PKC associate with the signaling complex by direct binding to INAD. We also found that a second ion channel, TRPL, bound to INAD. Thus, most of the proteins involved directly in phototransduction appear to bind to INAD. Furthermore, we found that INAD formed homopolymers and the homomultimerization occurred through two PDZ domains. Thus, we propose that the INAD supramolecular complex is a higher order signaling web consisting of an extended network of INAD molecules through which a G protein–coupled cascade is tethered.  相似文献   
56.
Phylogenetic relationships among major clades of anuran amphibians were studied using partial sequences of three nuclear protein coding genes, Rag-1, Rag-2, and rhodopsin in 26 frog species from 18 families. The concatenated nuclear data set comprised 2,616 nucleotides and was complemented by sequences of the mitochondrial 12S and 16S rRNA genes for analyses of evolutionary rates. Separate and combined analyses of the nuclear markers supported the monophyly of modern frogs (Neobatrachia), whereas they did not provide support for the monophyly of archaic frog lineages (Archaeobatrachia), contrary to previous studies based on mitochondrial data. The Neobatrachia contain two well supported clades that correspond to the subfamilies Ranoidea (Hyperoliidae, Mantellidae, Microhylidae, Ranidae, and Rhacophoridae) and Hyloidea (Bufonidae, Hylidae, Leptodactylidae, and Pseudidae). Two other families (Heleophrynidae and Sooglossidae) occupied basal positions and probably represent ancient relicts within the Neobatrachia, which had been less clearly indicated by previous mitochondrial analyses. Branch lengths of archaeobatrachians were consistently shorter in all separate analyses, and nonparametric rate smoothing indicated accelerated substitution rates in neobatrachians. However, relative rate tests confirmed this tendency only for mitochondrial genes. In contrast, nuclear gene sequences from our study and from an additional GenBank survey showed no clear phylogenetic trends in terms of differences in rates of molecular evolution. Maximum likelihood trees based on Rag-1 and using only one neobatrachian and one archaeobatrachian sequence, respectively, even had longer archaeobatrachian branches averaged over all pairwise comparisons. More data are necessary to understand the significance of a possibly general assignation of short branches to basal and species-poor taxa by tree-reconstruction algorithms.  相似文献   
57.
Human apolipoprotein A-I (apo A-I) and its engineered constructs form discoidal lipid bilayers upon interaction with lipids in vitro. We now report the cloning, expression, and purification of apo A-I derived from zebrafish (Danio rerio), which combines with phospholipids to form similar discoidal bilayers and may prove to be superior to human apo A-I constructs for rapid reconstitution of seven-transmembrane helix receptors into nanoscale apolipoprotein bound bilayers (NABBs). We characterized NABBs by gel-filtration chromatography, native polyacrylamide gradient gel electrophoresis, UV-visible photobleaching difference spectroscopy, and fluorescence spectroscopy. We used electron microscopy to determine the stoichiometry and orientation of rhodopsin (rho)-containing NABBs prepared under various conditions and correlated stability and signaling efficiency of rho in NABBs with either one or two receptors. We discovered that the specific activity of G protein coupling for single rhos sequestered in individual NABBs was nearly identical with that of two rhos per NABB under conditions where stoichiometry and orientation could be inferred by electron microscopy imaging. Thermal stability of rho in NABBs was superior to that of rho in various commonly used detergents. We conclude that the NABB system using engineered zebrafish apo A-I is a native-like membrane mimetic system for G-protein-coupled receptors and discuss strategies for rapid incorporation of expressed membrane proteins into NABBs.  相似文献   
58.
Three distinct subtypes of vesicular glutamate transporters (VGLUTs) have been identified to date that are expressed basically in a cell type-specific manner. We have found a splice variant of VGLUT1 mRNA that is expressed almost exclusively in photosensitive tissues, i.e. the retina and the pineal gland. The variant mRNA, termed VGLUT1v, contains an additional 75 base pair sequence derived from part of a second intron (designated as exon IIa) between exons 2 and 3. The variant accounted for approximately 70% and 25%of VGLUT1 mRNA in the adult retina and pineal gland, respectively. The expression of VGLUT1v was developmentally regulated in both tissues. Organ culture showed that expression of the variant in the retina increased in association with the development of rod cells, suggesting that VGLUT1v is expressed in rod cells. In situ hybridization with variant-specific probes showed expression of VGLUT1v in the inner segment layer of photoreceptor cells. On the other hand, variant expression did not parallel the development of rhodopsin-positive cells in the pineal gland. As rod cells and pinealocytes are known to release glutamate continuously at ribbon synapses, it is possible that the variant has some functional advantage over the wild-type transporter in such a specialized manner of glutamate release.  相似文献   
59.
pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a receptor of the negative phototaxis of Natronobacterium pharaonis. In halobacterial membrane, ppR forms a complex with its transducer pHtrII, and this complex transmits the light signal to the sensory system in the cytoplasm. In the present work, the truncated transducer, t-Htr, was used which interacts with ppR [Sudo et al. (2001) Photochem. Photobiol. 74, 489-494]. Two water-soluble reagents, hydroxylamine and azide, reacted both with the transducer-free ppR and with the complex ppR/t-Htr (the complex between ppR and its truncated transducer). In the dark, the bleaching rates caused by hydroxylamine were not significantly changed between transducer-free ppR and ppR/t-Htr, or that of the free ppR was a little slower. Illumination accelerated the bleach rates, which is consistent with our previous conclusion that the reaction occurs selectively at the M-intermediate, but the rate of the complex was about 7.4-fold slower than that of the transducer-free ppR. Azide accelerated the M-decay, and its reaction rate of ppR/t-Htr was about 4.6-fold slower than free ppR. These findings suggest that the transducer binding decreases the water accessibility around the chromophore at the M-intermediate. Its implication is discussed.  相似文献   
60.
The light-driven photocycle of rhodopsin begins the photoreceptor cascade that underlies visual response. In a sequence of events, the retinal covalently attached to the rhodopsin protein undergoes a conformational change that communicates local changes to a global conformational change throughout the whole protein. In turn, the large-scale protein change then activates G-proteins and signal amplification throughout the cell. The nature of this change, involving a coupling between a local process and larger changes throughout the protein, may be important for many membrane proteins. In addition, functional work has shown that this coupling occurs with different efficiency in different lipid settings. To begin to understand the nature of the efficiency of this coupling in different lipid settings, we present a molecular dynamics study of rhodopsin in an explicit dioleoyl-phosphatidylcholine bilayer. Our system was simulated for 40 ns and provides insights into the very early events of the visual cascade, before the full transition and activation have occurred. In particular, we see an event near 10 ns that begins with a change in hydrogen bonding near the retinal and that leads through a series of coupled changes to a shift in helical tilt. This type of event, though rare on the molecular dynamics time-scale, could be an important clue to the types of coupling that occur between local and large-scale conformational change in many membrane proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号