首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   626篇
  免费   79篇
  国内免费   37篇
  2023年   10篇
  2022年   5篇
  2021年   10篇
  2020年   12篇
  2019年   17篇
  2018年   17篇
  2017年   35篇
  2016年   17篇
  2015年   21篇
  2014年   19篇
  2013年   43篇
  2012年   21篇
  2011年   42篇
  2010年   36篇
  2009年   33篇
  2008年   40篇
  2007年   36篇
  2006年   39篇
  2005年   37篇
  2004年   24篇
  2003年   33篇
  2002年   23篇
  2001年   27篇
  2000年   22篇
  1999年   15篇
  1998年   19篇
  1997年   15篇
  1996年   9篇
  1995年   9篇
  1994年   10篇
  1993年   9篇
  1992年   11篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1985年   4篇
  1984年   4篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有742条查询结果,搜索用时 15 毫秒
21.
Studies on lipopolysaccharide (LPS) from the cells of Proteus mirabilis RMS-203 were focused upon reduction of lethal toxicity and of pyrogenicity by biological and chemical modification. A heptoseless mutant, strain N-434, was isolated by the use of phage resistancy as a tool. LPS from that heptoseless mutant was completely deficient in neutral sugars and mainly composed of 2-keto-deoxy-octonic acid (KDO), glucosamine and fatty acids. It revealed almost the same antitumor activity as LPS of the wild type but it was less toxic and less pyrogenic.

Hydroxylaminolysis and reduction with LiAlH4 resulted in removal of fatty acids from LPS accompanied with decrease in lethal toxicity and antitumor acitivity but not in pyrogenicity.

Lipid A fractions showed almost the same antitumor activity as intact LPS but less lethality and less pyrogenicity.  相似文献   
22.
The production of norovirus virus‐like particles (NoV VLPs) displaying NY‐ESO‐1 cancer testis antigen in Pichia pastoris BG11 Mut+ has been enhanced through feed‐strategy optimization using a near‐infrared bioprocess monitor (RTBio® Bioprocess Monitor, ASL Analytical, Inc.), capable of monitoring and controlling the concentrations of glycerol and methanol in real‐time. The production of NoV VLPs displaying NY‐ESO‐1 in P. pastoris has potential as a novel cancer vaccine platform. Optimization of the growth conditions resulted in an almost two‐fold increase in the expression levels in the fermentation supernatant of P. pastoris as compared to the starting conditions. We investigated the effect of methanol concentration, batch phase time, and batch to induction transition on NoV VLP‐NY‐ESO‐1 production. The optimized process included a glycerol transition phase during the first 2 h of induction and a methanol concentration set point of 4 g L?1 during induction. Utilizing the bioprocess monitor to control the glycerol and methanol concentrations during induction resulted in a maximum NoV VP1‐NY‐ESO‐1 yield of 0.85 g L?1. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:518–526, 2016  相似文献   
23.
Streptavidin is a homotetrameric protein binding the vitamin biotin and peptide analogues with an extremely high affinity, which leads to a large variety of applications. The biotin‐auxotrophic yeast Pichia pastoris has recently been identified as a suitable host for the expression of the streptavidin gene, allowing both high product concentrations and productivities. However, so far only methanol‐based expression systems have been applied, bringing about increased oxygen demand, strong heat evolution and high requirements for process safety, causing increased cost. Moreover, common methanol‐based processes lead to large proportions of biotin‐blocked binding sites of streptavidin due to biotin‐supplemented media. Targeting these problems, this paper provides strategies for the methanol‐free production of highly bioactive core streptavidin by P. pastoris under control of the constitutive GAP promoter. Complex were superior to synthetic production media regarding the proportion of biotin‐blocked streptavidin. The optimized, easily scalable fed‐batch process led to a tetrameric product concentration of up to 4.16 ± 0.11 µM of biotin‐free streptavidin and a productivity of 57.8 nM h?1 based on constant glucose feeding and a successive shift of temperature and pH throughout the cultivation, surpassing the concentration in un‐optimized conditions by a factor of 3.4. Parameter estimation indicates that the optimized conditions caused a strongly increased accumulation of product at diminishing specific growth rates (μ ≈ D < 0.01 h?1), supporting the strategy of feeding. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:855–864, 2016  相似文献   
24.
25.
26.
The study of animal acoustic signals is a central tool for many fields in ecology and evolution, but the diversity of analytical methods and sources of animal sound recordings poses important challenges for carrying out robust acoustic analyses. Sound file compression and background noise may both affect acoustic analysis, although little attention has been paid to their respective effects. We evaluated the effect of these factors by assessing the systematic deviation (i.e. bias) and measurement error (i.e. precision) that they generate on spectrographic parameters and two (dis)similarity methods (dynamic time warping on frequency contours and cross-correlation), which represent the most common methods currently used for quantitative characterization of acoustic signals. Measurements were taken across a wide range of signals from a diverse group of bird species, and compared between uncompressed files and decompressed files obtained from mp3-encoded files generated using the two most common mp3 encoders (Fraunhofer and LAME). Measurements were also compared across a range of synthetically-generated background noise levels. Compression did not significantly bias any of the acoustic or similarity measurements. However, the precision of acoustic parameters representing single extreme values (e.g. peak frequency) as well as dynamic time warping distances, was strongly affected by compression. High background noise biased most energy distribution-related parameters (e.g. spectral entropy) and affected the precision of most acoustic parameters and dynamic time warping. Overall, compression and background noise did have considerable effects on acoustic analyses. We provide recommendations to avoid potential pitfalls and maximize the information that can be reliably obtained.  相似文献   
27.
28.
Optimization of fed-batch feeding parameters was explored for a system with multiple mechanisms of product inactivation. In particular, two separate mechanisms of inactivation were identified for the recombinant tissue-type activator (r-tPA) protein. Dynamic inactivation models were written to describe particular r-tPA glycoform inactivation in the presence and absence of free-glucose. A glucose-independent inactivation mechanism was identified, and inactivation rate constants were found dependent upon the presence of glycosylation of r-tPA at N184. Inactivation rate constants of the glucose-dependent mechanism were not affected by glycosylation at N184. Fed-batch optimization was performed for r-tPA production by CHO cell culture in a stirred-tank reactor with glucose, glutamine and asparagine feed. Feeding profiles in which culture supernatant concentrations of free-glucose and amino acids (combined glutamine and asparagine) were used as control variables, were evaluated for a wide variety of set points. Simulation results for a controlled feeding strategy yielded an optimum at set points of 1.51 g L(-1) glucose and 1.18 g L(-1) of amino acids. Optimization was also performed in absence of metabolite control using fixed feed-flow rates initiate during the exponential growth phase. Fixed feed-flow results displayed a family of optimum solutions along a mass flow rate ratio of 3.15 of glucose to amino acids. Comparison of the two feeding strategies showed a slight advantage of rapid feeding at a fixed flow rate as opposed to metabolite control for a product with multiple mechanisms of inactivation.  相似文献   
29.
The refolding of recombinant protein from inclusion bodies expressed in Escherichia coli can present a process bottleneck. Yields at industrially relevant concentrations are restricted by aggregation of protein upon dilution of the denatured form. This article studies the effect of five factors upon the dilution refolding of protein in a twin impeller fed-batch system using refold buffer containing only the oxidized form of the redox reagent. Such a buffer is easier to prepare and more stable than a buffer containing both reduced and oxidized forms. The five factors chosen were: bulk impeller Reynolds number, mini-impeller Reynolds number, injection rate of denatured protein, redox ratio, and guanidine hydrochloride (GdHCl) concentration. A 2(5) factorial experiment was conducted at an industrially relevant protein concentration using lysozyme as the test system. The study identified that in the system used, the guanidine hydrochloride concentration, redox ratio, and injection rate were the most important factors in determining refolding yields. Two interactions were found to be important: redox ratio/guanidine hydrochloride concentration and guanidine hydrochloride concentration/injection rate. Conditions were also found at which high refolding yields could be achieved even with rapid injection and poor mixing efficiency. Therefore, a comparative assessment was carried out with minimal mixing in a simple batch-refolding mode of operation, which revealed different behavior to that of fed-batch. A graphical (windows of operation) analysis of the batch data suggested that optimal yields and productivity are obtained at high guanidine hydrochloride concentrations (1.2 M) and redox ratios of unity or greater.  相似文献   
30.
In this study we have analyzed the dynamic covariation of the mammalian cell proteome with respect to functional phenotype during fed-batch culture of NS0 murine myeloma cells producing a recombinant IgG(4) monoclonal antibody. GS-NS0 cells were cultured in duplicate 10 L bioreactors (36.5 degrees C, 15% DOT, pH 7.0) for 335 h and supplemented with a continuous feed stream after 120 h. Cell-specific growth rate declined continuously after 72 h of culture. Cell-specific recombinant monoclonal antibody production rate (qP) varied sixfold through culture. Whilst qP correlated with relative recombinant heavy chain mRNA abundance up to 216 h, qP subsequently declined, independent of recombinant heavy chain or light chain mRNA abundance. GS-NS0 cultures were sampled at 48 h intervals between 24 and 264 h of culture for proteomic analyses. Total protein abundance and nascent polypeptide synthesis was determined by 2D PAGE of unlabeled proteins visualized by SYPRO Ruby and autoradiography of (35)S-labeled polypeptides, respectively. Covariation of nascent polypeptide synthesis and abundance with biomass-specific cell growth, glucose and glutamate consumption, lactate and Mab production rates were then examined using two partial least squares regression models. Most changes in polypeptide synthesis or abundance for proteins previously identified by mass spectrometry were positively correlated with biomass-specific growth rate. We conclude that the substantial transitions in cell physiology and qP that occur during culture utilize a relatively constant complement of the most abundant host cell machines that vary primarily with respect to induced changes in cell growth rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号