首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1037篇
  免费   87篇
  国内免费   18篇
  2023年   10篇
  2022年   31篇
  2021年   29篇
  2020年   35篇
  2019年   32篇
  2018年   37篇
  2017年   24篇
  2016年   14篇
  2015年   24篇
  2014年   48篇
  2013年   69篇
  2012年   39篇
  2011年   24篇
  2010年   26篇
  2009年   54篇
  2008年   47篇
  2007年   67篇
  2006年   64篇
  2005年   58篇
  2004年   57篇
  2003年   47篇
  2002年   51篇
  2001年   31篇
  2000年   17篇
  1999年   28篇
  1998年   29篇
  1997年   23篇
  1996年   8篇
  1995年   22篇
  1994年   13篇
  1993年   14篇
  1992年   12篇
  1991年   8篇
  1990年   9篇
  1989年   9篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   7篇
  1984年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有1142条查询结果,搜索用时 49 毫秒
51.
Recognition of short linear motifs (SLiMs) or peptides by proteins is an important component of many cellular processes. However, due to limited and degenerate binding motifs, prediction of cellular targets is challenging. In addition, many of these interactions are transient and of relatively low affinity. Here, we focus on one of the largest families of SLiM‐binding domains in the human proteome, the PDZ domain. These domains bind the extreme C‐terminus of target proteins, and are involved in many signaling and trafficking pathways. To predict endogenous targets of PDZ domains, we developed MotifAnalyzer‐PDZ, a program that filters and compares all motif‐satisfying sequences in any publicly available proteome. This approach enables us to determine possible PDZ binding targets in humans and other organisms. Using this program, we predicted and biochemically tested novel human PDZ targets by looking for strong sequence conservation in evolution. We also identified three C‐terminal sequences in choanoflagellates that bind a choanoflagellate PDZ domain, the Monsiga brevicollis SHANK1 PDZ domain (mbSHANK1), with endogenously‐relevant affinities, despite a lack of conservation with the targets of a homologous human PDZ domain, SHANK1. All three are predicted to be signaling proteins, with strong sequence homology to cytosolic and receptor tyrosine kinases. Finally, we analyzed and compared the positional amino acid enrichments in PDZ motif‐satisfying sequences from over a dozen organisms. Overall, MotifAnalyzer‐PDZ is a versatile program to investigate potential PDZ interactions. This proof‐of‐concept work is poised to enable similar types of analyses for other SLiM‐binding domains (e.g., MotifAnalyzer‐Kinase). MotifAnalyzer‐PDZ is available at http://motifAnalyzerPDZ.cs.wwu.edu .  相似文献   
52.
53.
Hanna RA  Garcia-Diaz BE  Davies PL 《FEBS letters》2007,581(16):2894-2898
Calpastatin is the endogenous, specific protein inhibitor of the calcium-dependent protease, calpain. Using an active site knock-out m-calpain mutant we have studied the enzyme's calcium-dependent binding to calpastatin by surface plasmon resonance without the complication of proteolysis. Calpastatin was capable of simultaneously binding four molecules of calpain. Its four inhibitory domains (CAST1, 2, 3, and 4) were individually expressed in Escherichia coli and the kinetics of their interaction with calpain was separately compared. Their K(d) values ranged from picomolar to nanomolar in the order CAST1>4>3>2. They have similar k(on) values but the k(off) values ranged over three orders of magnitude and can account for the differences in affinity.  相似文献   
54.
55.
Kim H  Sung S  Klein R 《Genetica》2007,131(1):59-68
In order to examine the evolution of lineage specific genes, we analyzed intron phase distributions and exon-bordering domains in primate and rodent specific genes. We found that the expansion of symmetric exon-bordering domains could not explain the evolution of lineage specific genes. Rather internal intron loss of a domain can partially explain the excess of class 1–1 intron phases in the lineage specific genes. We suggest the event that led to excess of symmetric exons in lineage specific genes had little bearing on shaping the phenotypes specific to the individual lineage. Instead, Kruppel-associated box (KRAB) proteins associated with zinc finger C2H2 (zf-C2H2) type are likely to be responsible for the lineage specific function.  相似文献   
56.
In this review, we focus on the assembly of DNA/protein complexes that trigger transposition in eukaryotic members of the IS630–Tc1–mariner (ITm) super-family, the Tc1- and mariner-like elements (TLEs and MLEs). Elements belonging to this super-family encode transposases with DNA binding domains of different origins, and recent data indicate that the chimerization of functional domains has been an important evolutionary aspect in the generation of new transposons within the ITm super-family. These data also reveal that the inverted terminal repeats (ITRs) at the ends of transposons contain three kinds of motif within their sequences. The first two are well known and correspond to the cleavage site on the outer ITR extremities, and the transposase DNA binding site. The organization of ITRs and of the transposase DNA binding domains implies that differing pathways are used by MLEs and TLEs to regulate transposition initiation. These differences imply that the ways ITRs are recognized also differ leading to the formation of differently organized synaptic complexes. The third kind of motif is the transposition enhancers, which have been found in almost all the functional MLEs and TLEs analyzed to date. Finally, in vitro and in vivo assays of various elements all suggest that the transposition initiation complex is not formed randomly, but involves a mechanism of oriented transposon scanning. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at . An erratum to this article can be found at  相似文献   
57.
Chemokine receptors are the central signaling hubs of several processes such as cell migration, chemotaxis and cell positioning. In this graphical review, we provide an overview of the structural and mechanistic principles governing chemokine recognition that are currently emerging. Structural models of chemokine-receptor co-complexes with endogenous chemokines, viral chemokines and therapeutics have been resolved that highlight multiple interaction sites, termed as CRS1, CRS1.5 etc. The first site of interaction has been shown to be the N-terminal domain of the receptors (CRS1 site). A large structural flexibility of the N-terminal domain has been reported that was supported by both experimental and simulation studies. Upon chemokine binding, the N-terminal domain appears to show constricted dynamics and opens up to interact with the chemokine via a large interface. The subsequent sites such as CRS1.5 and CRS2 sites have been structurally well resolved although differences arise such as the localization of the N-terminus of the ligand to a major or minor pocket of the orthosteric binding site. Several computational studies have highlighted the dynamic protein-protein interface at the CRS1 site that seemingly appears to resolve the differences in NMR and mutagenesis studies. Interestingly, the differential dynamics at the CRS1 site suggests a mixed model of binding with complex signatures of both conformational selection and induced fit models. Integrative experimental and computational approaches could help unravel the structural basis of promiscuity and specificity in chemokine-receptor binding and open up new avenues of therapeutic design.  相似文献   
58.
《Journal of molecular biology》2019,431(24):4817-4833
Factor XI (FXI), the zymogen of activated FXI (FXIa), is an attractive target for novel anticoagulants because FXI inhibition offers the potential to reduce thrombosis risk while minimizing the risk of bleeding. BAY 1213790, a novel anti-FXIa antibody, was generated using phage display technology. Crystal structure analysis of the FXIa–BAY 1213790 complex demonstrated that the tyrosine-rich complementarity-determining region 3 loop of the heavy chain of BAY 1213790 penetrated deepest into the FXIa binding epitope, forming a network of favorable interactions including a direct hydrogen bond from Tyr102 to the Gln451 sidechain (2.9 Å). The newly discovered binding epitope caused a structural rearrangement of the FXIa active site, revealing a novel allosteric mechanism of FXIa inhibition by BAY 1213790. BAY 1213790 specifically inhibited FXIa with a binding affinity of 2.4 nM, and in human plasma, prolonged activated partial thromboplastin time and inhibited thrombin generation in a concentration-dependent manner.  相似文献   
59.
Initially understood for its physiological maintenance of self-tolerance, the immune checkpoint molecule has recently been recognized as a promising anti-cancer target. There has been considerable interest in the biology and the action mechanism of the immune checkpoint therapy, and their incorporation with other therapeutic regimens. Recently the small-molecule inhibitor (SMI) has been identified as an attractive combination partner for immune checkpoint inhibitors (ICIs) and is becoming a novel direction for the field of combination drug design. In this review, we provide a systematic discussion of the biology and function of major immune checkpoint molecules, and their interactions with corresponding targeting agents. With both preclinical studies and clinical trials, we especially highlight the ICI + SMI combination, with its recent advances as well as its application challenges.  相似文献   
60.
Long noncoding RNAs (lncRNAs) are key players in the development and progression of human cancers. The lncRNA PCAT-1 has been shown to be upregulated in human non–small cell lung cancer (NSCLC); however, its role and molecular mechanisms in NSCLC cell progression remain unclear. Here, we found that the higher expression of PCAT-1 led to a significantly poorer survival time, and multivariate analysis revealed that PCAT-1 was an independent risk factor of prognosis in NSCLC. Furthermore, we also found that the knockdown of PCAT-1 remarkably suppressed cell growth by inducing cell cycle arrest and apoptosis promotion in NSCLC cells. Moreover, the bioinformatics analysis and luciferase reporter assay revealed that PCAT-1 directly bound to the miR-149-5p, which has been reported to act as a tumor suppressor in diverse cancers. In addition, our results confirmed that the tumor-promoting effects of PCAT-1 in NSCLC cells are at least partly through negative modulation of miR-149-5p. Finally, mechanistic investigations showed that PCAT-1 upregulated the expression of miR-149-5p target gene leucine-rich repeats and immunoglobulin (Ig)-like domains 2 (LRIG2) through competitively “spongeing” miR-149-5p. Therefore, we concluded that PCAT-1 may promote the development of NSCLC through the miR-149-5p/LRIG2 axis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号