首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   13篇
  国内免费   12篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   6篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   9篇
  2014年   23篇
  2013年   23篇
  2012年   16篇
  2011年   16篇
  2010年   8篇
  2009年   11篇
  2008年   17篇
  2007年   17篇
  2006年   16篇
  2005年   8篇
  2004年   12篇
  2003年   9篇
  2002年   15篇
  2001年   5篇
  2000年   4篇
  1999年   6篇
  1998年   15篇
  1997年   8篇
  1996年   7篇
  1995年   5篇
  1994年   8篇
  1993年   8篇
  1992年   5篇
  1991年   2篇
  1990年   6篇
  1989年   12篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   10篇
  1982年   6篇
  1981年   2篇
  1980年   5篇
  1979年   2篇
  1974年   1篇
排序方式: 共有358条查询结果,搜索用时 46 毫秒
21.
Abstract

The binding of the benzodioxolo-benzoquinolizine alkaloid, berberine chloride to natural and synthetic DNAs has been studied by intrinsic and extrinsic circular dichroic measurements. Binding of berberine causes changes in the circular dichroism spectrum of DNA as shown by the increase of molar ellipticity of the 270nm band, but with very little change of the 240nm band. The molar ellipticity at the saturation depends strongly on the base composition of DNA and also on salt concentration, but always larger for the AT rich DNA than the GC rich DNA The features in the circular dichroic spectral changes of berberine-synthetic DNA complexes were similar to that of native DNA but depends on the sequence of base pairs.

On binding to DNA and polynucleotides, the alkaloid becomes optically active. The extrinsic circular dichroism developed in the visible absorption region (300–500nm) for the berberine-DNA complexes shows two broad spectral bands in the regions 425–440nm and 340–360nm with the maximum varying depending on base composition and sequence of DNA While the 425nm band shows less variation on the binding ratio, the 360nm band is remarkably dependent on the DNA/alkaloid ratio. The generation of the alkaloid associated extrinsic circular dichroic bands is not dependent on the base composition or sequence of base pairs, but the nature and magnitude of the bands are very much dependent on these two factors and also on the salt concentration. The interpretation of the results with respect to the modes of the alkaloid binding to DNA are presented.  相似文献   
22.
Molecular techniques, such as polymerase chain reaction (PCR) and quantitative PCR (qPCR), are very sensitive, but may detect total DNA present in a sample, including extracellular DNA (eDNA) and DNA coming from live and dead cells. DNase I is an endonuclease that non-specifically cleaves single- and double-stranded DNA. This enzyme was tested in this study to analyze its capacity of digesting DNA coming from dead cells with damaged cell membranes, leaving DNA from living cells with intact cell membranes available for DNA-based methods. For this purpose, an optimized DNase I/Proteinase K (DNase/PK) protocol was developed. Intact Staphylococcus aureus cells, heat-killed Pseudomonas aeruginosa cells, free genomic DNA of Salmonella enterica, and a mixture of these targets were treated according to the developed DNase/PK protocol. In parallel, these samples were treated with propidium monoazide (PMA) as an already described assay for live-dead discrimination. Quantitative PCR and PCR-DGGE of the eubacterial 16S rDNA fragment were used to test the ability of the DNase/PK and PMA treatments to distinguish DNA coming from cells with intact cell membranes in the presence of DNA from dead cells and free genomic DNA. The methods were applied to three months old autochthonous drinking water biofilms from a pilot facility built at a German waterworks. Shifts in the DNA patterns observed after DGGE analysis demonstrated the applicability of DNase/PK as well as of the PMA treatment for natural biofilm investigation. However, the DNase/PK treatment demonstrated some practical advantages in comparison with the PMA treatment for live/dead discrimination of bacterial targets in drinking water systems.  相似文献   
23.
24.
25.
Sperm maturation, including the acquisition of motility and the full ability to fertilize oocyte, occurs during its transit through the dynamic environment of the epididymis. However, the roles of many genes involved in the process of sperm maturation still remain to be found. Based on an expressed sequence tag named imds-60, which was first found in uterus but is highly expressed in epididymis, the full-length cDNA sequence of imds-60 with a complete open reading frame was obtained in mouse epididymis by GenBank searching, polymerase chain reaction-based procedures, and 5'- and 3'-rapid amplification of cDNA ends. This protein was predicted to have an N-terminal signal peptide and a C-terminal DNase I-like domain with nine transmembrane motifs in the middle part of the protein. Northern blot analysis showed that the mRNA of imds-60 was highly expressed in epididymis but at a rather lower level in uterus, seminal vesicle gland, and stomach. Further study revealed that the mRNA of imds-60 is only expressed in corpus and cauda regions of epididymis, not in caput. It is regulated partially by androgen and peaked in male mice aged from 3 weeks to adult. The imds-60 protein might play an important role in cell communication during sperm maturation.  相似文献   
26.
Endonuclease-induced DNA fragmentation is a hallmark of apoptosis. DNase gamma (DNase ) was recently identified as one of the endonucleases responsible for apoptotic DNA fragmentation. In this study, immunohistochemistry for DNase was performed on paraffin sections of rodent liver in well-defined models of hepatocyte apoptosis induced by Fas antibody (Fas) or cycloheximide (CHX), and necrosis induced by lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). DNase immunoreactivity was compared with TdT-mediated dUTP nick-end labeling (TUNEL) reactivity. Our results showed TUNEL reactivity in both apoptotic and necrotic hepatocytes. DNase immunoreactivity was not detected during LPS-induced or CCl4-induced hepatocyte necrosis. In contrast, it was evident during CHX-induced, but not Fas-induced, apoptotic DNA fragmentation. These findings suggest that DNase plays an important role in Fas-independent apoptotic DNA fragmentation in hepatocytes.  相似文献   
27.
Liu AX  Zhang SB  Xu XJ  Ren DT  Liu GQ 《Cell research》2004,14(5):407-414
A pea actin isoform PEAcl with green fluorescent protein (GFP) fusion to its C-terminus and His-tag to its Nterminus, was expressed in prokaryotic cells in soluble form, and highly purified with Ni-Chelating Sepharose^TM Fast Flow column. The purified fusion protein (PEAcl-GFP) efficiently inhibited DNase I activities before polymerization,and activated the myosin Mg-ATPase activities after polymerization. The PEAcl-GFP also polymerized into green fluorescent filamentous structures with a critical concentration of 0.75μM. These filamentous structures were labeled by TRITC-phalloidin, a specific agent for staining actin microfilaments, and identified as having 9 nm diameters by negative staining. These results indicated that PEAc 1 preserved the essential characteristics of actin even with His-tag and GFP fusion, suggesting a promising potential to use GFP fusion protein in obtainning soluble plant actin isoform to analyze its physical and biochemical properties in vitro. The PEAcl-GFP was also expressed in tobacco BY2 cells,which offers a new pathway for further studying its distribution and function in vivo.  相似文献   
28.
29.
The pseudorabies virus (PRV) DNase is an alkaline exonuclease and endonuclease, which exhibits an Escherichia coli RecBCD-like catalytic function. The PRV DNA-binding protein (DBP) promotes the renaturation of complementary single strands of DNA, which is an essential function for recombinase. To investigate the functional and physical interactions between PRV DBP and DNase, these proteins were purified to homogeneity. PRV DBP stimulated the DNase activity, especially the exonuclease activity, in a dose-dependent fashion. Acetylation of DBP by acetic anhydride resulted in a loss of DNA-binding ability and a 60% inhibition of the DNase activity, suggesting that DNA-binding ability of PRV DBP was required for stimulating the DNase activity. PRV DNase behaved in a processive mode; however, it was converted into a distributive mode in the presence of DBP, implying that PRV DBP stimulated the dissociation of DNase from DNA substrates. The physical interaction between DBP and DNase was further analyzed by enzyme-linked immunosorbent assay, and a significant interaction was observed. Thus, these results suggested that PRV DBP interacted with PRV DNase and regulated the DNase activity in vitro.  相似文献   
30.
Programmed cell death or apoptosis leads to the activation of the caspase-activated DNase (CAD), which degrades chromosomal DNA into nucleosomal fragments. Biochemical studies revealed that CAD forms an inactive heterodimer with the inhibitor of caspase-activated DNase (ICAD), or its alternatively spliced variant, ICAD-S, in the cytoplasm. It was initially proposed that proteolytic cleavage of ICAD by activated caspases causes the dissociation of the ICAD/CAD heterodimer and the translocation of active CAD into the nucleus in apoptotic cells. Here, we show that endogenous and heterologously expressed ICAD and CAD reside predominantly in the nucleus in nonapoptotic cells. Deletional mutagenesis and GFP fusion proteins identified a bipartite nuclear localization signal (NLS) in ICAD and verified the function of the NLS in CAD. The two NLSs have an additive effect on the nuclear targeting of the CAD-ICAD complex, whereas ICAD-S, lacking its NLS, appears to have a modulatory role in the nuclear localization of CAD. Staurosporine-induced apoptosis evoked the proteolysis and disappearance of endogenous and exogenous ICAD from the nuclei of HeLa cells, as monitored by immunoblotting and immunofluorescence microscopy. Similar phenomenon was observed in the caspase-3-deficient MCF7 cells upon expressing procaspase-3 transiently. We conclude that a complex mechanism, involving the recognition of the NLSs of both ICAD and CAD, accounts for the constitutive accumulation of CAD/ICAD in the nucleus, where caspase-3-dependent regulation of CAD activity takes place.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号