首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35122篇
  免费   2015篇
  国内免费   1359篇
  38496篇
  2024年   113篇
  2023年   392篇
  2022年   503篇
  2021年   692篇
  2020年   738篇
  2019年   904篇
  2018年   829篇
  2017年   766篇
  2016年   859篇
  2015年   1137篇
  2014年   1916篇
  2013年   2853篇
  2012年   1511篇
  2011年   1597篇
  2010年   1373篇
  2009年   1571篇
  2008年   1593篇
  2007年   1652篇
  2006年   1541篇
  2005年   1447篇
  2004年   1329篇
  2003年   1207篇
  2002年   1160篇
  2001年   838篇
  2000年   799篇
  1999年   762篇
  1998年   781篇
  1997年   659篇
  1996年   618篇
  1995年   678篇
  1994年   622篇
  1993年   484篇
  1992年   500篇
  1991年   399篇
  1990年   404篇
  1989年   305篇
  1988年   357篇
  1987年   282篇
  1986年   242篇
  1985年   356篇
  1984年   408篇
  1983年   272篇
  1982年   309篇
  1981年   162篇
  1980年   138篇
  1979年   130篇
  1978年   80篇
  1977年   48篇
  1976年   52篇
  1973年   36篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
91.
MassSQUIRM     
《Epigenetics》2013,8(4):490-499
In eukaryotes, DNA is wrapped around proteins called histones and is condensed into chromatin. Post-translational modification of histones can result in changes in gene expression. One of the most well-studied histone modifications is the methylation of lysine 4 on histone H3 (H3K4). This residue can be mono-, di- or tri-methylated and these varying methylation states have been associated with different levels of gene expression. Understanding exactly what the purpose of these methylation states is, in terms of gene expression, has been a topic of much research in recent years. Enzymes that can add (methyltransferases) and remove (demethylases) these modifications are of particular interest. The first demethylase discovered, LSD1, is the most well-classified and has been implicated in contributing to human cancers and to DNA damage response pathways. Currently, there are limited methods for accurately studying the activity of demethylases in vitro or in vivo. In this work, we present MassSQUIRM (mass spectrometric quantitation using isotopic reductive methylation), a quantitative method for studying the activity of demethylases capable of removing mono- and di-methyl marks from lysine residues. We focus specifically on LSD1 due to its potential as a prime therapeutic target for human disease. This quantitative approach will enable better characterization of the activity of LSD1 and other chromatin modifying enzymes in vitro, in vivo or in response to inhibitors.  相似文献   
92.
《Epigenetics》2013,8(5):566-572
Birthweight has been associated with a number of health outcomes throughout life. Crucial to proper infant growth and development is the placenta, and alterations to placental gene function may reflect differences in the intrauterine environment which functionally contribute to infant growth and may ultimately affect the child’s health. To examine if epigenetic alteration to the glucocorticoid receptor (GR) gene was linked to infant growth, we analyzed 480 human placentas for differential methylation of the GR gene exon 1F and examined how this variation in methylation extent was associated with fetal growth. Multivariable linear regression revealed a significant association (p < 0.0001) between differential methylation of the GR gene and large for gestational age (LGA) status. Our work is one of the first to link infant growth as a measure of the intrauterine environment and epigenetic alterations to the GR and suggests that DNA methylation may be a critical determinant of placental function.  相似文献   
93.
《Epigenetics》2013,8(5):623-629
Reduced levels of global DNA methylation are associated with genomic instability and are independent predictors of cancer risk. Little is known about the environmental determinants of global DNA methylation in peripheral blood. We examined the association between demographic and lifestyle factors and levels of global leukocyte DNA methylation in 161 cancer-free subjects enrolled in the North Texas Healthy Heart Study aged 45–75 years in 2008. We used in-person interviews for demographics and lifestyle factors, a self-administrated Block food frequency questionnaire for diet, and bioelectrical impedance analysis and CT-scan for body composition. We measured genomic DNA methylation using bisulfite conversion of DNA and pyrosequencing for LINE-1. Body composition measures including body mass index, waist circumference, areas of subcutaneous fat and visceral fat, percent of fat mass and fat-free mass were not associated with global genomic DNA methylation after controlling the effect of age, gender and race/ethnicity. Instead, female gender was significantly associated with a reduced level of global methylation (β = -2.77, 95% CI: -4.33, -1.22). Compared to non-Hispanic whites, non-Hispanic blacks (β = -2.02, 95% CI: -3.55, -0.50) had significantly lower levels of global methylation. No association was found with age, cigarette smoking, alcohol drinking and dietary intake of nutrients in one-carbon metabolism. Global leukocyte DNA methylation differs by gender and race/ethnicity, suggesting these variables need to be taken into consideration in studies of global DNA methylation as an epigenetic marker for cancer.  相似文献   
94.
《Epigenetics》2013,8(10):1329-1338
Current computational methods used to analyze changes in DNA methylation and chromatin modification rely on sequenced genomes. Here we describe a pipeline for the detection of these changes from short-read sequence data that does not require a reference genome. Open source software packages were used for sequence assembly, alignment, and measurement of differential enrichment. The method was evaluated by comparing results with reference-based results showing a strong correlation between chromatin modification and gene expression. We then used our de novo sequence assembly to build the DNA methylation profile for the non-referenced Psammomys obesus genome. The pipeline described uses open source software for fast annotation and visualization of unreferenced genomic regions from short-read data.  相似文献   
95.
《Epigenetics》2013,8(12):1588-1595
DNA methylation is responsible for regulating gene expression and cellular differentiation and for maintaining genomic stability during normal human development. Furthermore, it plays a significant role in the regulation of hematopoiesis. In order to elucidate the influence of DNA methylation during B-cell development, genome-wide DNA methylation status of pro-B, pre-BI, pre-BII, and naïve-B-cells isolated from human umbilical cord blood was determined using the methylated CpG island recovery assay followed by next generation sequencing. On average, 182–200 million sequences were generated for each precursor B-cell subset in 10 biological replicates. An overall decrease in methylation was observed during the transition from pro-B to pre-BI, whereas no differential methylation was observed in the pre-BI to pre-BII transition or in the pre-BII to naïve B-cell transition. Most of the methylated regions were located within intergenic and intronic regions not present in a CpG island context. Putative novel enhancers were identified in these regions that were differentially methylated between pro-B and pre-BI cells. The genome-wide methylation profiles are publically available and may be used to gain a better understanding of the involvement of atypical DNA methylation in the pathogenesis of malignancies associated with precursor B-cells.  相似文献   
96.
《Epigenetics》2013,8(9):1071-1078
In plants, RNA-directed DNA methylation (RdDM) can target both transgene promoters and coding regions/gene bodies. RdDM leads to methylation of cytosines in all sequence contexts: CG, CHG and CHH. Upon segregation of the RdDM trigger, at least CG methylation can be maintained at promoter regions in the progeny. So far, it is not clear whether coding region methylation can be also maintained. We showed that the body of Potato spindle tuber viroid (PSTVd) transgene constructs became densely de novo methylated at CG, CHG and CHH sites upon PSTVd infection. In this study, we demonstrate that in viroid-free progeny plants, asymmetric CHH and CHG methylation was completely lost. However, symmetric CG methylation was stably maintained for at least two generations. Importantly, the presence of transgene body methylation did not lead to an increase of dimethylation of histone H3 lysine 9 or a decrease of acetylation of H3. Our data supports the view that CG methylation can be maintained not only in promoters but also in the body of transgenes. They further suggest that maintenance of methylation may occur independently of tested chromatin modifications.  相似文献   
97.
《Epigenetics》2013,8(10):1151-1160
Human brain function is mediated by biochemical processes, many of which can be visualized and quantified by positron emission tomography (PET). PET brain imaging of monoamine oxidase A (MAO A)—an enzyme metabolizing neurotransmitters—revealed that MAO A levels vary widely between healthy men and this variability was not explained by the common MAOA genotype (VNTR genotype), suggesting that environmental factors, through epigenetic modifications, may mediate it. Here, we analyzed MAOA methylation in white blood cells (by bisulphite conversion of genomic DNA and subsequent sequencing of cloned DNA products) and measured brain MAO A levels (using PET and [11C]clorgyline, a radiotracer with specificity for MAO A) in 34 healthy non-smoking male volunteers. We found significant interindividual differences in methylation status and methylation patterns of the core MAOA promoter. The VNTR genotype did not influence the methylation status of the gene or brain MAO A activity. In contrast, we found a robust association of the regional and CpG site-specific methylation of the core MAOA promoter with brain MAO A levels. These results suggest that the methylation status of the MAOA promoter (detected in white blood cells) can reliably predict the brain endophenotype. Therefore, the status of MAOA methylation observed in healthy males merits consideration as a variable contributing to interindividual differences in behavior.  相似文献   
98.
《Epigenetics》2013,8(12):1349-1354
Epigenetic mechanisms, including DNA methylation, are important determinants in development and disease. There is a need for technologies capable of detecting small variations in methylation levels in an accurate and reproducible manner, even if only limited amounts of DNA are available (which is the case in many studies in humans). Quantitative methylation analysis of minute DNA amounts after whole bisulfitome amplification (qMAMBA) has been proposed as an alternative, but this technique has not been adequately standardized and no comparative study against conventional methods has been performed, that includes a wide range of methylation percentages and different target assays. We designed an experiment to compare the performance of qMAMBA and bisulfite-treated genomic (non-amplified) DNA pyrosequencing. Reactions were performed in duplicate for each technique in eight different target genes, using nine artificially constructed DNA samples with methylation levels ranging between 0% and 100% with intervals of 12.5%. Cubic polynomial curves were plotted from the experimental results and the real methylation values and the resulting equation was used to estimate new corrected data points. The use of the cubic regression-based correction benefits the accuracy and the power of discrimination in methylation studies. Additionally, dispersion of the new estimated data around a y = x line (R2) served to fix a cutoff that can discriminate, with a single 9-point curve experiment, whether whole bisulfitome amplification and subsequent qMAMBA can produce accurate methylation results. Finally, even with an optimized reagent kit, DNA samples subjected to whole bisulfitome amplification enhance the preferential amplification of unmethylated alleles, and subtle changes in methylation levels cannot be detected confidently.  相似文献   
99.
《Epigenetics》2013,8(1):106-112
The methylated DNA immunoprecipitation method (MeDIP) is a genome-wide, high-resolution approach that detects DNA methylation with oligonucleotide tiling arrays or high throughput sequencing platforms. A simplified high-throughput MeDIP assay will enable translational research studies in clinics and populations, which will greatly enhance our understanding of the human methylome. We compared three commercial kits, MagMeDIP Kit TM (Diagenode), Methylated-DNA IP Kit (Zymo Research) and Methylamp? Methylated DNA Capture Kit (Epigentek), in order to identify which one has better reliability and sensitivity for genomic DNA enrichment. Each kit was used to enrich two samples, one from fresh tissue and one from a cell line, with two different DNA amounts. The enrichment efficiency of each kit was evaluated by agarose gel band intensity after Nco I digestion and by reaction yield of methylated DNA. A successful enrichment is expected to have a 1:4 to 10:1 conversion ratio and a yield of 80% or higher. We also evaluated the hybridization efficiency to genome-wide methylation arrays in a separate cohort of tissue samples. We observed that the MagMeDIP kit had the highest yield for the two DNA amounts and for both the tissue and cell line samples, as well as for the positive control. In addition, the DNA was successfully enriched from a 1:4 to 10:1 ratio. Therefore, the MagMeDIP kit is a useful research tool that will enable clinical and public health genome-wide DNA methylation studies.  相似文献   
100.
《Epigenetics》2013,8(11):1315-1330
We have recently reported that in astrocytoma cells the expression of interleukin-8 (IL-8) is upregulated by prostaglandin E2 (PGE2). Unfortunately, the exact mechanism by which this happens has not been clarified yet. Here, we have investigated whether IL-8 activation by PGE2 involves changes in DNA methylation and/or histone modifications in 46 astrocytoma specimens, two astrocytoma cell lines and normal astrocytic cells. The DNA methylation status of the IL-8 promoter was analyzed by bisulphite sequencing and by methylation DNA immunoprecipitation analysis. The involvement of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), as well as histone acetylation levels, was assayed by chromatin immunoprecipitation. IL-8 expression at promoter, mRNA and protein level was explored by transfection, real-time PCR and enzyme immunoassay experiments in cells untreated or treated with PGE2, 5-aza-2'-deoxycytidine (5-aza-dC) and HDAC inhibitors, alone or in combination. EMSA was performed with crude cell extracts or recombinant protein. We observed that PGE2 induced IL-8 activation through: (1) demethylation of the single CpG site 5 located at position -83 within the binding region for CEBP-β in the IL-8 promoter; (2) C/EBP-β and p300 co-activator recruitment; (3) H3 acetylation enhancement and (4) reduction in DNMT1, DNMT3a, HDAC2 and HDAC3 association to CpG site 5 region. Treatment with 5-aza-dC or HDAC inhibitors of class I HDACs strengthened either basal or PGE2-mediated IL-8 expression. These findings have elucidated an orchestrated mechanism triggered by PGE2 whereby concurrent association of site-specific demethylation and histone H3 hyperacetylation resulted in derepression of IL-8 gene expression in human astrocytoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号