首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35191篇
  免费   1953篇
  国内免费   1368篇
  38512篇
  2024年   128篇
  2023年   393篇
  2022年   503篇
  2021年   692篇
  2020年   738篇
  2019年   904篇
  2018年   829篇
  2017年   766篇
  2016年   859篇
  2015年   1137篇
  2014年   1916篇
  2013年   2853篇
  2012年   1511篇
  2011年   1597篇
  2010年   1373篇
  2009年   1571篇
  2008年   1593篇
  2007年   1652篇
  2006年   1541篇
  2005年   1447篇
  2004年   1329篇
  2003年   1207篇
  2002年   1160篇
  2001年   838篇
  2000年   799篇
  1999年   762篇
  1998年   781篇
  1997年   659篇
  1996年   618篇
  1995年   678篇
  1994年   622篇
  1993年   484篇
  1992年   500篇
  1991年   399篇
  1990年   404篇
  1989年   305篇
  1988年   357篇
  1987年   282篇
  1986年   242篇
  1985年   356篇
  1984年   408篇
  1983年   272篇
  1982年   309篇
  1981年   162篇
  1980年   138篇
  1979年   130篇
  1978年   80篇
  1977年   48篇
  1976年   52篇
  1973年   36篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Most hosts are concurrently or sequentially infected with multiple parasites; thus, fully understanding interactions between individual parasite species and their hosts depends on accurate characterization of the parasite community. For parasitic nematodes, noninvasive methods for obtaining quantitative, species‐specific infection data in wildlife are often unreliable. Consequently, characterization of gastrointestinal nematode communities of wild hosts has largely relied on lethal sampling to isolate and enumerate adult worms directly from the tissues of dead hosts. The necessity of lethal sampling severely restricts the host species that can be studied, the adequacy of sample sizes to assess diversity, the geographic scope of collections and the research questions that can be addressed. Focusing on gastrointestinal nematodes of wild African buffalo, we evaluated whether accurate characterization of nematode communities could be made using a noninvasive technique that combined conventional parasitological approaches with molecular barcoding. To establish the reliability of this new method, we compared estimates of gastrointestinal nematode abundance, prevalence, richness and community composition derived from lethal sampling with estimates derived from our noninvasive approach. Our noninvasive technique accurately estimated total and species‐specific worm abundances, as well as worm prevalence and community composition when compared to the lethal sampling method. Importantly, the rate of parasite species discovery was similar for both methods, and only a modest number of barcoded larvae (n = 10) were needed to capture key aspects of parasite community composition. Overall, this new noninvasive strategy offers numerous advantages over lethal sampling methods for studying nematode–host interactions in wildlife and can readily be applied to a range of study systems.  相似文献   
102.
103.
While welcoming the comment of Ho et al. ( 2015 ), we find little that undermines the strength of our criticism, and it would appear they have misunderstood our central argument. Here we respond with the purpose of reiterating that we are (i) generally critical of much of the evidence presented in support of the time‐dependent molecular rate (TDMR) hypothesis and (ii) specifically critical of estimates of μ derived from tip‐dated sequences that exaggerate the importance of purifying selection as an explanation for TDMR over extended timescales. In response to assertions put forward by Ho et al. ( 2015 ), we use panmictic coalescent simulations of temporal data to explore a fundamental assumption for tip‐dated tree shape and associated mutation rate estimates, and the appropriateness and utility of the date randomization test. The results reveal problems for the joint estimation of tree topology, effective population size and μ with tip‐dated sequences using beast . Given the simulations, beast consistently obtains incorrect topological tree structures that are consistent with the substantial overestimation of μ and underestimation of effective population size. Data generated from lower effective population sizes were less likely to fail the date randomization test yet still resulted in substantially upwardly biased estimates of rates, bringing previous estimates of μ from temporally sampled DNA sequences into question. We find that our general criticisms of both the hypothesis of time‐dependent molecular evolution and Bayesian methods to estimate μ from temporally sampled DNA sequences are further reinforced.  相似文献   
104.
ABSTRACT

Carefully balanced deoxynucleoside triphosphate (dNTP) pools are essential for both nuclear and mitochondrial genome replication and repair. Two synthetic pathways operate in cells to produce dNTPs, e.g., the de novo and the salvage pathways. The key regulatory enzymes for de novo synthesis are ribonucleotide reductase (RNR) and thymidylate synthase (TS), and this process is considered to be cytosolic. The salvage pathway operates both in the cytosol (TK1 and dCK) and the mitochondria (TK2 and dGK). Mitochondrial dNTP pools are separated from the cytosolic ones owing to the double membrane structure of the mitochondria, and are formed by the salvage enzymes TK2 and dGK together with NMPKs and NDPK in postmitotic tissues, while in proliferating cells the mitochondrial dNTPs are mainly imported from the cytosol produced by the cytosolic pathways. Imbalanced mitochondrial dNTP pools lead to mtDNA depletion and/or deletions resulting in serious mitochondrial diseases. The mtDNA depletion syndrome is caused by deficiencies not only in enzymes in dNTP synthesis (TK2, dGK, p53R2, and TP) and mtDNA replication (mtDNA polymerase and twinkle helicase), but also in enzymes in other metabolic pathways such as SUCLA2 and SUCLG1, ABAT and MPV17. Basic questions are why defects in these enzymes affect dNTP synthesis and how important is mitochondrial nucleotide synthesis in the whole cell/organism perspective? This review will focus on recent studies on purine and pyrimidine metabolism, which have revealed several important links that connect mitochondrial nucleotide metabolism with amino acids, glucose, and fatty acid metabolism.  相似文献   
105.
106.
In an effort to develop novel antimicrobial agents against drug-resistant bacterial infections, 5,6-dihydroimidazo[2,1-b]thiazole compounds were synthesized and tested for their antimicrobial activity. Eight compounds comprised by two sub-scaffolds were identified as hits against methicillin-resistant Staphylococcus aureus (MRSA). These hits were modified at 6-position by replacing (S)-6 to (R)-6 configuration and the (R)-isomers increased their antimicrobial activities by two-fold. The most active compound showed a MIC90 value of 3.7 μg/mL against MRSA in a standard microdilution bacterial growth inhibitory assay. This compound protected wax moth worms against MRSA at a dose of 5× MIC using a worm infectious model. This compound also exhibited inhibition of DNA gyrase activity in a DNA gyrase supercoil assay, suggesting the 5,6-dihydroimidazo[2,1-b]thiazoles may target DNA gyrase for the antimicrobial action.  相似文献   
107.
Mammalian immune receptor diversity is established via a unique restricted set of site-specific DNA rearrangements in lymphoid cells, known as V(D)J recombination. The lymphoid-specific RAG1-RAG2 protein complex (RAG1/2) initiates this process by binding to two types of recombination signal sequences (RSS), 12RSS and 23RSS, and cleaving at the boundaries of RSS and V, D, or J gene segments, which are to be assembled into immunoglobulins and T-cell receptors. Here we dissect the ordered assembly of the RAG1/2 heterotetramer with 12RSS and 23RSS DNAs. We find that RAG1/2 binds only a single 12RSS or 23RSS and reserves the second DNA-binding site specifically for the complementary RSS, to form a paired complex that reflects the known 12/23 rule of V(D)J recombination. The assembled RAG1/2 paired complex is active in the presence of Mg2+, the physiologically relevant metal ion, in nicking and double-strand cleavage of both RSS DNAs to produce a signal-end complex. We report here the purification and initial crystallization of the RAG1/2 signal-end complex for atomic-resolution structure elucidation. Strict pairing of the 12RSS and 23RSS at the binding step, together with information from the crystal structure of RAG1/2, leads to a molecular explanation of the 12/23 rule.  相似文献   
108.
Targeted knock‐in (KI) can be achieved in embryos by clustered regularly interspaced short palindromic repeats (CRISPR)‐assisted homology directed repair (HDR). However, HDR efficiency is constrained by the competition of nonhomologous end joining. The objective of this study was to explore whether CRISPR‐assisted targeted KI rates can be improved in bovine embryos by exposure to the HDR enhancer RS‐1. In vitro produced zygotes were injected with CRISPR components (300 ng/µl Cas9 messenger RNA and 100 ng/µl single guide RNA against a noncoding region) and a single‐stranded DNA (ssDNA) repair template (100 ng/µl). ssDNA template contained a 6 bp XbaI site insert, allowing targeted KI detection by restriction analysis, flanked by 50 bp homology arms. Following microinjection, zygotes were exposed to 0, 3.75, or 7.5 µM RS‐1 for 24 hr. No differences were noted between groups in terms of development or genome edition rates. However, targeted KI rates were doubled in the group exposed to 7.5 µM RS‐1 compared to the others (52.8% vs. 25% and 23.1%, for 7.5, 0, and 3.75 µM, respectively). In conclusion, transient exposure to 7.5 µM RS‐1 enhances targeted KI rates resulting in approximately half of the embryos containing the intended mutation, hence allowing direct KI generation in embryos.  相似文献   
109.
Mitochondrial DNA sequences were obtained from the NADH dehydrogenase subunit 3 (ND3), large rRNA, and cytochrome b genes from Meloidogyne incognita and Romanomermis culicivorax. Both species show considerable genetic distance within these same genes when compared with Caenorhabditis elegans or Ascaris suum, two species previously analyzed. Caenorhabditis, Ascaris, and Meloidogyne were selected as representatives of three subclasses in the nematode class Secernentea: Rhabditia, Spiruria, and Diplogasteria, respectively. Romanomermis served as a representative out-group of the class Adenophorea. The divergence between the phytoparasitic lineage (represented by Meloidogyne) and the three other species is so great that virtually every variable position in these genes appears to have accumulated multiple mutations, obscuring the phylogenetic information obtainable from these comparisons. The 39 and 42% amino acid similarity between the M. incognita and C. elegans ND3 and cytochrome b coding sequences, respectively, are approximately the same as those of C. elegans-mouse comparisons for the same genes (26 and 44%). This discovery calls into question the feasibility of employing cloned C. elegans probes as reagents to isolate phytoparasitic nematode genes. The genetic distance between the phytoparasitic nematode lineage and C. elegans markedly contrasts with the 79% amino acid similarity between C. elegans and A. suum for the same sequences. The molecular data suggest that Caenorhabditis and Ascaris belong to the same subclass.  相似文献   
110.
Suggested roles for polyamine function, and the evidence for these functions, is reviewed. These include membrane stabilization, free radical scavenging, effects on DNA, RNA and protein synthesis, effects on the activities of RNase, protease and other enzymes, the interaction with ethylene biosynthesis, and effects on second messengers. It is concluded that in addition to interacting with plant hormones, polyamines are able to modulate plant development through a fundamental mechanism(s) common to all living organisms.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - ADC arginine decarboxylase - Chl chlorophyll - DAP diaminopropane - DFMA DL--difluoromethylarginine - DFMO DL--difluoromethylornithine - PAs polyamines - Put putrescine - SAM S-adenosylmethionine - Spd spermidine - Spm spermine  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号