首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   2篇
  国内免费   2篇
  97篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   9篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   17篇
  2013年   4篇
  2012年   6篇
  2011年   12篇
  2010年   8篇
  2009年   5篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1979年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
21.
Notch1 mutations are found in more than 50% of human T cell acute lymphoblastic leukemia (T-ALL) cells. However, the functions of Notch1 for human T cell development and leukemogenesis are not well understood. To examine the role of Notch1, human hematopoietic stem cells (HSCs), which had been transduced with a constitutively active form of Notch1 (ICN1), were transplanted into severely immunodeficient NOD/Shi-scid-IL2rγnull (NOG) mice. We found that the great majority of the ICN1-expressing hematopoietic cells in the bone marrow expressed surface markers for T cells, such as CD3, CD4, and CD8, and that this T cell development was independent of the thymus. Accordingly, phenotypically mature CD8+ single positive (SP) T cells were observed in the spleen. Furthermore, T-ALL developed in one NOG recipient mouse out of 26 that had been secondary transferred with the T cells developed in the first NOG mice. These results indicate that Notch1 signaling in HSCs promotes CD8+ SP T cell development, and that T cell leukemogenesis may require additional oncogenic factors other than Notch1 activation.  相似文献   
22.
Exercise training increases insulin sensitivity. Over the past decades, considerable progress has been made in understanding the molecular basis for this important effect of physical exercise. However, the underlying mechanism is still not fully described. Recent studies have revealed that the stress responsive protein family Sestrins (SESNs) may play an important role in improving insulin sensitivity of skeletal muscle under exercise training. In this study, we aim to better understand the relationship between SESNs and AMPK in response to exercise training and the possible mechanism by which SESNs mediate glucose metabolism. We used wild type, AMPKα2+/? and AMPKα2?/? C57BL/6 mice to reveal the pathway by which 6?weeks of exercise training induced SESNs. We explored the mechanism through which SESNs regulated glucose metabolism in vitro by overexpressing or inhibiting SESNs, and inhibiting AMPK or autophagy in myotubes. We found that a 6-week exercise training regime improved oxidative metabolism, activated the insulin signaling pathway and increased the level of SESN2 and SESN3 in an AMPKα2-dependent manner. Overexpression of SESN3 or SESN2 and SESN3 together increased glucose uptake, activated the insulin signaling pathway, and promoted GLUT4 translocation in myotubes. Although inhibition of SESNs had no effect on glucose uptake, SESNs could reverse reduced glucose uptake following autophagy inhibition, and may be downstream effectors of AMPK responses in myotubes. Taken together our data show that SESNs are induced by AMPKα2 after exercise training, and SESNs, specifically SESN3, play a key role in exercise training-mediated glucose metabolism in skeletal muscle.  相似文献   
23.
糖、脂代谢及氧化应激与糖尿病肾病的相关性   总被引:1,自引:0,他引:1  
糖尿病肾病是糖尿病的主要并发症之一。近年来,糖尿病肾病的发病率呈逐渐上升趋势。研究发现,糖、脂代谢与糖尿病肾病的发生密切相关,而氧化应激也在糖、脂代谢异常中起重要作用。本文综述了有关糖、脂代谢与糖尿病肾病相关性研究,以及硫氧还蛋白及硫氧还蛋白结合蛋白2在糖尿病肾病发生中的作用。  相似文献   
24.
25.
We have previously shown that cancer cells can protect themselves from apoptosis induced by type I interferons (IFNs) through a ras→MAPK-mediated pathway. In addition, since IFN-mediated signalling components STATs are controlled by PPAR gamma we studied the pharmacological interaction between recombinant IFN-β and the PPAR-γ agonist troglitazone (TGZ). This combination induced a synergistic effect on the growth inhibition of BxPC-3, a pancreatic cancer cell line, through the counteraction of the IFN-β-induced activation of STAT-3, MAPK and AKT and the increase in the binding of both STAT-1 related complexes and PPAR-γ with specific DNA responsive elements. The synergism on cell growth inhibition correlated with a cell cycle arrest in G0/G1 phase, secondary to a long-lasting increase of both p21 and p27 expressions. Blockade of MAPK activation and the effect on p21 and p27 expressions, induced by IFN-β and TGZ combination, were due to the decreased activation of STAT-3 secondary to TGZ. IFN-β alone also increased p21 and p27 expression through STAT-1 phosphorylation and this effect was attenuated by the concomitant activation of IFNbeta-induced STAT-3-activation. The combination induced also an increase in autophagy and a decrease in anti-autophagic bcl-2/beclin-1 complex formation. This effect was mediated by the inactivation of the AKT→mTOR-dependent pathway. To the best of our knowledge this is the first evidence that PPAR-γ activation can counteract STAT-3-dependent escape pathways to IFN-β-induced growth inhibition through cell cycle perturbation and increased autophagic death in pancreatic cancer cells.  相似文献   
26.
Peroxynitrite mediated nitrosative stress, an indisputable initiator of DNA damage and overactivation of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated after sensing DNA damage, are two crucial pathogenetic mechanisms in diabetic neuropathy. The intent of the present study was to investigate the effect of combination of a peroxynitrite decomposition catalyst (PDC), FeTMPyP and a PARP inhibitor, 4-ANI against diabetic peripheral neuropathy. The end points of evaluation of the study included motor nerve conduction velocity (MNCV) and nerve blood flow (NBF) for evaluating nerve functions; thermal hyperalgesia and mechanical allodynia for assessing nociceptive alterations, malondialdehyde and peroxynitrite levels to detect oxidative stress-nitrosative stress; NAD concentration in sciatic nerve to assess overactivation of PARP. Additionally immunohistochemical studies for nitrotyrosine and Poly(ADP-ribose) (PAR) was also performed. Treatment with the combination of FeTMPyP and 4-ANI led to significant improvement in nerve functions and pain parameters and also attenuated the oxidative-nitrosative stress markers. Further, the combination also reduced the overactivation of PARP as evident from increased NAD levels and decreased PAR immunopositivity in sciatic nerve microsections. Thus, it can be concluded that treatment with the combination of a PDC and PARP inhibitor attenuates alteration in peripheral nerves in diabetic neuropathy (DN).  相似文献   
27.
供体细胞在鸡—麻鸭嵌合体胚胎中的发育   总被引:2,自引:0,他引:2  
马玉忠  李赞东  沙金  刘春海  王宁 《遗传学报》2001,28(11):1002-1005
用微注射法将鸡的PGCs注入到麻鸭的胚盘下腔中,用鸡W染色体DNA探针通过原位杂交对供体细胞在嵌合体胚胎中的发育作了研究,54个胚胎各器官都有不同程度的嵌合,其中肝脏的嵌合率最高,性腺最低,胚盘细胞移植可制备鸡-麻鸭的体细胞和种系嵌合体。  相似文献   
28.
The success of clinical proteome analysis should be assessed based on the clinical impact following implementation of findings. Although there have been several technological advancements in mass spectrometry in the last years, these have not resulted in similar advancements in clinical proteomics. In addition, application of proteomic biomarkers in clinical diagnostics and practical improvement in the disease management is extremely rare. In this review, we discuss the relevant issues associated with identification of robust biomarkers of clinical value. Urine appears to be an ideal source of biomarkers, for theoretical, methodological, and practical reasons. Therefore, this review is focused on the search for biomarkers in urine within the last decade. Urine can be used for non-invasive assessment of a variety of diseases including those affecting the urogenital tract and also other pathologies such as cardiovascular disease or appendicitis. We also discuss the importance of data validation, an essential step in translating biomarkers into the clinical practice. Furthermore, we examine several examples of apparently successful proteomic biomarker discovery studies and their implications for disease diagnosis, prognosis, and therapy evaluation. We also discuss some current challenges in this field and reflect on future research prospects. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   
29.
Previous studies and replication analyses have linked chromosome 18q21.1–23 with type 2 diabetes (T2DM) and its complications, including diabetic nephropathy (DN). Here we investigated the association of POL1-nearby variant rs488846, MALT1-nearby variant rs2874116, MC4R-nearby variant rs1942872, PHLPP rs9958800 and DSEL-nearby variant rs9966483 single nucleotide polymorphisms (SNPs) in the 18q region, previously linked with DN in African-Americans, with T2DM in (North African) Tunisian subjects, followed by their association with DN, which was performed subsequent to the analysis of the association with T2DM. Study subjects comprised 900 T2DM cases and 748 normoglycemic control, and genotyping was carried out by PCR–RFLP analysis. Of the 5 SNPs analyzed, POL1-nearby variant rs488846 [P = 0.044], and MC4R-nearby variant rs1942872 [P = 0.012] were associated with moderate risk of T2DM. However, there was a lack of consistency in the association of the 5 tested SNPs with DN. As such, it appears that the three chromosome 18q region variants appear to play a role in T2DM pathogenesis, but not with DN in North African Tunisian Arabs.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号