首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
  49篇
  2019年   1篇
  2018年   1篇
  2014年   7篇
  2011年   4篇
  2010年   6篇
  2009年   8篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2002年   1篇
  1995年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
41.
We here describe the NMR analysis of an intact lipopolysaccharide (LPS, endotoxin) in water with 1,2-dihexanoyl-sn-glycero-3-phosphocholine as detergent. When HPLC-purified rough-type LPS of Capnocytophaga canimorsus was prepared, 13C,15N labeling could be avoided. The intact LPS was analyzed by homonuclear (1H) and heteronuclear (1H,13C, and 1H,31P) correlated one- and two-dimensional NMR techniques as well as by mass spectrometry. It consists of a penta-acylated lipid A with an α-linked phosphoethanolamine attached to C-1 of GlcN (I) in the hybrid backbone, lacking the 4′-phosphate. The hydrophilic core oligosaccharide was found to be a complex hexasaccharide with two mannose (Man) and one each of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo), Gal, GalN, and l-rhamnose residues. Position 4 of Kdo is substituted by phosphoethanolamine, also present in position 6 of the branched ManI residue. This rough-type LPS is exceptional in that all three negative phosphate residues are “masked” by positively charged ethanolamine substituents, leading to an overall zero net charge, which has so far not been observed for any other LPS. In biological assays, the corresponding isolated lipid A was found to be endotoxically almost inactive. By contrast, the intact rough-type LPS described here expressed a 20,000-fold increased endotoxicity, indicating that the core oligosaccharide significantly contributes to the endotoxic potency of the whole rough-type C. canimorsus LPS molecule. Based on these findings, the strict view that lipid A alone represents the toxic center of LPS needs to be reassessed.  相似文献   
42.
Quantification of membrane partition potential of drug compounds is of great pharmaceutical interest. Here, a novel approach combining liquid-state NMR diffusion measurements and fast-tumbling lipid/detergent bicelles is used to measure accurately the partition coefficient K(p) of amantadine in phospholipid bilayers. Amantadine is found to have a strong membrane partition potential, with K(p) of 27.6 in DMPC and 37.8 in POPC lipids. Electrostatic interaction also plays a major role in the drug's affinity towards biological membrane as introduction of negatively charged POPG dramatically increases its K(p). Saturation transfer difference experiments in small bicelles indicate that amantadine localizes near the negatively charged phosphate group and the hydrocarbon chain of bilayer lipid. The approach undertaken in this study is generally applicable for characterizing interactions between small molecules and phospholipid membranes.  相似文献   
43.
There is strong experimental evidence of the influence of surfactants (e.g., fatty acids) on the kinetics of amyloid fibril formation. However, the structures of mixed assemblies and interactions between surfactants and fibril-forming peptides are still not clear. Here, coarse-grained simulations are employed to study the aggregation kinetics of amyloidogenic peptides in the presence of amphiphilic lipids. The simulations show that the lower the fibril formation propensity of the peptides, the higher the influence of the surfactants on the peptide self-assembly kinetics. In particular, the lag phase of weakly aggregating peptides increases because of the formation of mixed oligomers, which are promoted by hydrophobic interactions and favorable entropy of mixing. A transient peak in the number of surfactants attached to the growing fibril is observed before reaching the mature fibril in some of the simulations. This peak originates from transient fibrillar defects consisting of exposed hydrophobic patches on the fibril surface, which provide a possible explanation for the temporary maximum of fluorescence observed sometimes in kinetic traces of the binding of small-molecule dyes to amyloid fibrils.  相似文献   
44.
Although methyl iso- and anteiso-branched fatty acids occur widely in the membrane lipids of prokaryotic microorganisms, relatively little is known about the physical properties of phospholipids containing these fatty acids. We report here a monolayer and differential scanning calorimetric characterization of several synthetic phosphatidylcholines containing branched-chain fatty acids, and describe the interactions of these phospholipids with cholesterol and with a bacterial hopanoid. We find that monolayers as well as bilayers of methyl isobranched- and especially of methyl anteisobranched-fatty-acid-containing phosphatidylcholines exhibit a reduced solid-to-fluid phase transition temperature in comparison with linear saturated fatty acid-containing phosphatidylcholines of comparable chain length. We also find that the liquid-condensed or gel states of branched-chain fatty acid-containing phosphatidylcholines are partially disordered relative to those of phospholipids containing linear saturated fatty acids, although the presence of a methyl branch has only a small effect on hydrocarbon chain packing in the liquid-expanded or liquid-crystalline states. The presence of cholesterol was found to produce a marked condensation of liquid-expanded films and a small condensation of liquid-condensed films, whether the phosphatidylcholine contained linear or branched-chain fatty acyl constituents. The presence of a bacterial hopanoid produced similar, although slightly smaller, monolayer-condensing effects, indicating that these compounds may perform a cholesterol-like function in bacterial membranes.  相似文献   
45.
We have investigated the stability of giant unilamellar vesicles (GUVs) and large unilamellar vesicles (LUVs) of lipid membranes in the liquid-ordered phase (lo phase) against a detergent, Triton X-100. We found that in the presence of high concentrations of Triton X-100, the structure of GUVs and LUVs of dipalmitoyl-PC (DPPC)/cholesterol (chol) and sphingomyelin (SM)/chol membranes in the lo phase was stable and no leakage of fluorescent probes from the vesicles occurred. We also found that ether-linked dihexadecylphosphatidylcholine (DHPC) membranes containing more than 20 mol% cholesterol were in the lo phase, and that DHPC/chol-GUV and DHPC/chol-LUV in the lo phase were stable and no leakage of internal contents occurred in the presence of Triton X-100. In contrast, octylglucoside solution could easily break these GUVs and LUVs of the lo phase membranes and induced internal contents leakage. These data indicate that GUVs and LUVs of the lo phase membranes are very valuable for practical use.  相似文献   
46.
We have used cryo-transmission electron microscopy (cryo-TEM) for inspection of aggregates formed by dimyristoylphosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC) in aqueous solution at total phospholipid concentrations cL≤5% and DMPC/DHPC ratios q≤4.0. In combination with ocular inspections, we are able to sketch out this part of phase-diagram at T=14-80 °C. The temperature and the ratio q are the dominating variables for changing sample morphology, while cL to a lesser extent affects the aggregate structure. At q=0.5, small, possibly disc-shaped, aggregates with a diameter of ∼6 nm are formed. At higher q-values, distorted discoidal micelles that tend to short cylindrical micelles are observed. The more well-shaped discs have a diameter of around 20 nm. Upon increasing q or the temperature, long slightly flattened cylindrical micelles that eventually branch are formed. A holey lamellar phase finally appears upon further elevation of q or temperature. The implications for biological NMR work are two. First, discs prepared as membrane mimics are frequently much smaller than predicted by current “ideal bicelle” models. Second, the q≈3 preparations used for aligning water-soluble biomolecules in magnetic fields consist of perforated lamellar sheets. Furthermore, the discovered sequence of morphological transitions may have important implications for the development of bicelle-based membrane protein crystallization methods.  相似文献   
47.
The increased focus on the structural and physical properties of membrane proteins has made it critical to develop methods that provide a reliable estimate of membrane protein stability. A simple approach is to monitor the protein's conformational changes in mixed detergent systems, typically consisting of an anionic (denaturing) and non-ionic (non-denaturing) component. Linear correlations between, e.g., the melting temperature and the bulk mole fraction of the anionic component have been observed. However, a potential complication is that the bulk mole fraction is not identical to the mole fraction in the mixed micelle, which is the local environment experienced by the membrane protein. Here, we present an extensive analysis of the thermal stability of the membrane-integrated domain of the outer membrane protein AIDA in the presence of different mixed micelles. In the micelle system SDS-octyl-polyoxyethylene, the melting temperature in the absence of SDS extrapolates to 113 °C using bulk mole fractions. However, for mixed micelles involving short-chain detergents or phospholipids, the melting temperature calculated using bulk mole fractions reaches values up to several hundred degrees higher than 113 °C and can only be obtained by extrapolation over a narrow mole fraction interval. Furthermore, there is a non-linear relationship between the melting temperature and bulk mole fractions for mixed micelle systems involving cationic detergents (also denaturing). We show that if we instead use the micellar mole fraction as a parameter for denaturing detergent strength, we obtain linear correlations which extrapolate to more or less the same value of the melting temperature. There remains some scatter in the extrapolated values of the melting temperature in different binary systems, which suggest that additional micellar interactions may play a role. Nevertheless, in general terms, the mixed micellar composition is a good parameter to describe the membrane protein's microenvironment. Note, however, that for the mixed micelle system involving SDS and dodecyl maltoside, which has been used by several research groups to determine membrane protein stability, the estimate provided by bulk mole fraction leads to similar values as that of micellar mole fractions.  相似文献   
48.
Solubilization of membrane proteins for two-dimensional electrophoresis (2DE) is very difficult. In this study, we report the use of 1,2-diheptanoyl-sn-glycero-3-phosphatdiyl choline (DHPC) as a detergent to solubilize integral membrane proteins for 2DE. Rat ventricular microsomal fractions enriched with sarco(endo)plasmic reticulum (SR) membrane proteins were used as a model system. Compatibility of DHPC with a high concentration of urea increases the solubility of proteins compared with sulphobetaines or ASB-14. Peptide mass analysis assisted in the identification of key SR membrane proteins including SR Ca(2+) ATPase and other membrane proteins, which have not previously been reported on 2DE. These results suggest that DHPC is a better detergent for solubilizing membrane proteins and may be useful in generating proteomic maps for most complex organelles including SR.  相似文献   
49.
Cannabinoids are compounds that can modulate neuronal functions and immune responses via their activity at the CB1 receptor. We used 2H NMR order parameters and relaxation rate determination to delineate the behavior of magnetically aligned phospholipid bilayers in the presence of several structurally distinct cannabinoid ligands. THC (Δ9-Tetrahydrocannabinol) and WIN-55,212-2 were found to lower the phase transition temperature of the DMPC and to destabilize their acyl chains leading to a lower average SCD (≈ 0.13), while methanandamide and CP-55,940 exhibited unusual properties within the lipid bilayer resulting in a greater average SCD (≈ 0.14) at the top of the phospholipid upper chain. The CB1 antagonist AM281 had average SCD values that were higher than the pure DMPC lipids, indicating a stabilization of the lipid bilayer. R1Z versus |SCD|2 plots indicated that the membrane fluidity is increased in the presence of THC and WIN-55,212-2. The interaction of CP-55,940 with a variety of zwitterionic and charged membranes was also assessed. The unusual effect of CP-55,940 was present only in bicelles composed of DMPC. These studies strongly suggest that cannabinoid action on the membrane depends upon membrane composition as well as the structure of the cannabinoid ligands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号