首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   6篇
  国内免费   11篇
  2024年   1篇
  2023年   3篇
  2021年   9篇
  2020年   5篇
  2019年   13篇
  2018年   21篇
  2017年   8篇
  2016年   10篇
  2015年   10篇
  2014年   48篇
  2013年   41篇
  2012年   16篇
  2011年   54篇
  2010年   21篇
  2009年   26篇
  2008年   20篇
  2007年   21篇
  2006年   14篇
  2005年   6篇
  2004年   8篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
排序方式: 共有408条查询结果,搜索用时 171 毫秒
391.
During pregnancy and lactation, metabolic adaptations involve changes in expression of desaturases and elongases (Elovl2 and Elovl5) in the mammary gland and liver for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (AA) required for fetal and postnatal growth. Adipose tissue is a pool of LC-PUFAs. The response of adipose tissue for the synthesis of these fatty acids in a lipid-deficient diet of dams is unknown. The aim of this study was to explore the role of maternal tissue in the synthesis of LC-PUFAs in rats fed a low-lipid diet during pregnancy and lactation. Fatty acid composition (indicative of enzymatic activity) and gene expression of encoding enzymes for fatty acid synthesis were measured in liver, mammary gland and adipose tissue in rats fed a low-lipid diet. Gene expression of desaturases, elongases, fatty acid synthase (Fasn) and their regulator Srebf-1c was increased in the mammary gland, liver and adipose tissue of rats fed a low-lipid diet compared with rats from the adequate-lipid diet group throughout pregnancy and lactation. Genes with the highest (P < 0.05) expression in the mammary gland, liver and adipose tissue were Elovl5 (1333%), Fads2 (490%) and Fasn (6608%), respectively, in a low-lipid diet than in adequate-lipid diet. The percentage of AA in the mammary gland was similar between the low-lipid diet and adequate-lipid diet groups during the second stage of pregnancy and during lactation. The percentage of monounsaturated and saturated fatty acids was significantly (P < 0.05) increased throughout pregnancy and lactation in all tissues in rats fed a low-lipid diet than in rats fed an adequate-lipid diet. Results suggest that maternal metabolic adaptations used to compensate for lipid-deficient diet during pregnancy and lactation include increased expression of genes involved in LC-PUFAs synthesis in a stage- and tissue-specific manner and elevated lipogenic activity (saturated and monounsaturated fatty acid synthesis) of maternal tissues including adipose tissue.  相似文献   
392.
The high level of dehydroascorbic acid (DHA) in the lenticular tissue is an important risk factor for the development of age-related cataracts. In this study, the effects of DHA on structure and function of lens crystallins were studied in the presence of carnosine using gel mobility shift assay, different spectroscopic techniques, and lens culture analysis. The DHA-induced unfolding and aggregation of lens proteins were largely prevented by this endogenous dipeptide. The ability of carnosine to preserve native protein structure upon exposure to DHA suggests the essential role of this dipeptide in prevention of the senile cataract development. Although the DHA-modified α-crystallin was characterized by altered chaperone activity, functionality of this protein was significantly restored in the presence of carnosine. The increased proteolytic instability of DHA-modified lens proteins was also attenuated in the presence of carnosine. Furthermore, the assessment of lens culture suggested that DHA can induce significant lens opacity which can be prevented by carnosine. These observations can be explained by the pleiotropic functions of this endogenous and pharmaceutical compound, notably by its anti-glycation and anti-aggregation properties. In summary, our study suggests that carnosine may have therapeutic potential in preventing senile cataracts linked with the increased lenticular DHA generation, particularly under pathological conditions associated with the oxidative stress.  相似文献   
393.
One advantage of using glycerol as a carbon source for industrial bioprocesses is its higher degree of reduction compared to glucose. In order to exploit this reducing power for the production of reduced compounds thereby significantly increasing maximum theoretical yields, the electrons derived from glycerol oxidation must first be saved in the form of cytosolic NAD(P)H. However, the industrial platform organism Saccharomyces cerevisiae naturally uses an FAD-dependent pathway for glycerol catabolism transferring the electrons to the respiratory chain. Here, we developed a pathway replacement strategy forcing glycerol catabolism through a synthetic, NAD+-dependent route. The required expression cassettes were integrated via CRISPR-Cas9 targeting the endogenous GUT1 locus, thereby abolishing the native FAD-dependent pathway. Interestingly, this pathway replacement even established growth in synthetic glycerol medium of strains naturally unable to grow on glycerol and an engineered derivative of CEN.PK even showed the highest ever reported maximum specific growth rate on glycerol (0.26 h−1).  相似文献   
394.
In recent years, foods that contain omega-3 lipids have emerged as important promoters of human health. These lipids are essential for the functional development of the brain and retina, and reduction of the risk of cardiovascular and Alzheimer's diseases. The global market for omega-3 production, particularly docosahexaenoic acid (DHA), saw a large expansion in the last decade due to the increasing use of this lipid as an important component of infant food formulae and supplements. The production of omega-3 lipids from fish and vegetable oil sources has some drawbacks, such as complex purification procedures, unwanted contamination by marine pollutants, reduction or even extinction of several species of fish, and aspects related to sustainability. A promising alternative system for the production of omega-3 lipids is from microbial metabolism of yeast, fungi, or microalgae. The aim of this review is to discuss the various omega-3 sources in the context of the global demand and market potential for these bioactive compounds. To summarize, it is clear that fish and vegetable oil sources will not be sufficient to meet the future needs of the world population. The biotechnological production of single-cell oil comes as a sustainable alternative capable of supplementing the global demand for omega-3, causing less environmental impact.  相似文献   
395.
We provide evidence of an important role for ascorbate free radical (AFR) reductase, dehydroascorbate (DHA) reductase, glutathione, and glutathione reductase as components of an oxidant-scavenging system in the midgut of larval Helicoverpa zea. Also, midgut ortho-quinone reductase is a potentially important constituent of the protective system against quinones. The midgut activities of AFR reductase, DHA reductase, glutathione reductase, and ortho-quinone reductase were, respectively, 168, 22.1, 6, and 39.5 nmol/min/mg protein. The relatively high activity of these enzymes in the midgut provides circumstantial evidence for a protective mechanism utilizing ascorbate as an antioxidant and glutathione and/or NADPH as reductants. To our knowledge, the enzymes AFR reductase and DHA reductase have not been reported in insects. The particular relevance of this system to antioxidant protection, and in particular to the detoxication of quinones formed in damaged leaf tissues, is discussed.  相似文献   
396.
The brain is rich in DHA, which plays important roles in regulating neuronal function. Recently, using compound-specific isotope analysis that takes advantage of natural differences in carbon-13 content (13C/12C ratio or δ13C) of the food supply, we determined the brain DHA half-life. However, because of methodological limitations, we were unable to capture DHA turnover rates in peripheral tissues. In the current study, we applied compound-specific isotope analysis via high-precision GC combustion isotope ratio mass spectrometry to determine half-lives of brain, liver, and plasma DHA in mice following a dietary switch experiment. To model DHA tissue turnover rates in peripheral tissues, we added earlier time points within the diet switch study and took advantage of natural variations in the δ13C-DHA of algal and fish DHA sources to maintain DHA pool sizes and used an enriched (uniformly labeled 13C) DHA treatment. Mice were fed a fish-DHA diet (control) for 3 months, then switched to an algal-DHA treatment diet, the 13C enriched-DHA treatment diet, or they stayed on the control diet for the remainder of the study time course. In mice fed the algal and 13C enriched-DHA diets, the brain DHA half-life was 47 and 46 days, the liver half-life was 5.6 and 7.2 days, and the plasma half-life was 4.7 and 6.4 days, respectively. By using improved methodologies, we calculated DHA turnover rates in the liver and plasma, and our study for the first time, by using an enriched DHA source (very high δ13C), validated its utility in diet switch studies.  相似文献   
397.
《Epigenetics》2013,8(12):1570-1576
Supplementation of fish oil rich in omega-3 polyunsaturated fatty acids (n-3 PUFA) during pregnancy has been shown to confer favorable health outcomes in the offspring. In a randomized controlled trial, we have previously shown that n-3 PUFA supplementation in pregnancy was associated with modified immune responses and some markers of immune maturation. However, the molecular mechanisms underlying these heritable effects are unclear. To determine whether the biological effects of maternal n-3 PUFA supplementation are mediated through DNA methylation, we analyzed CD4+ T-cells purified from cryo-banked cord blood samples from a previously conducted clinical trial. Of the 80 mother-infant pairs that completed the initial trial, cord blood samples of 70 neonates were available for genome-wide DNA methylation profiling. Comparison of purified total CD4+ T-cell DNA methylation profiles between the supplement and control groups did not reveal any statistically significant differences in CpG methylation, at the single-CpG or regional level. Effect sizes among top-ranked probes were lower than 5% and did not warrant further validation. Tests for association between methylation levels and key n-3 PUFA parameters, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), or total n-3 PUFAs were suggestive of dose-dependent effects, but these did not reach genome-wide significance. Our analysis of the microarray data did not suggest strong modifying effects of in utero n-3 PUFA exposure on CD4+ T-cell methylation profiles, and no probes on the array met our criteria for further validation. Other epigenetic mechanisms may be more relevant mediators of functional effects induced by n-3 PUFA in early life.  相似文献   
398.
Elevated circulating levels of saturated free fatty acids (sFFAs; e.g. palmitate) are known to provoke inflammatory responses and cause insulin resistance in peripheral tissue. By contrast, mono- or poly-unsaturated FFAs are protective against sFFAs. An excess of sFFAs in the brain circulation may also trigger neuroinflammation and insulin resistance, however the underlying signaling changes have not been clarified in neuronal cells. In the present study, we examined the effects of palmitate on mitochondrial function and viability as well as on intracellular insulin and nuclear factor-κB (NF-κB) signaling pathways in Neuro-2a and primary rat cortical neurons. We next tested whether oleate preconditioning has a protective effect against palmitate-induced toxicity. Palmitate induced both mitochondrial dysfunction and insulin resistance while promoting the phosphorylation of mitogen-activated protein kinases and nuclear translocation of NF-κB p65. Oleate pre-exposure and then removal was sufficient to completely block subsequent palmitate-induced intracellular signaling and metabolic derangements. Oleate also prevented ceramide-induced insulin resistance. Moreover, oleate stimulated ATP while decreasing mitochondrial superoxide productions. The latter were associated with increased levels of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Inhibition of protein kinase A (PKA) attenuated the protective effect of oleate against palmitate, implicating PKA in the mechanism of oleate action. Oleate increased triglyceride and blocked palmitate-induced diacylglycerol accumulations. Oleate preconditioning was superior to docosahexaenoic acid (DHA) or linoleate in the protection of neuronal cells against palmitate- or ceramide-induced cytotoxicity. We conclude that oleate has beneficial properties against sFFA and ceramide models of insulin resistance-associated damage to neuronal cells.  相似文献   
399.
The formation and mineralisation of bone are two critical processes in fast-growing Atlantic salmon (Salmo salar). The mechanisms of these processes, however, have not been described in detail. Thus, in vitro systems that allow the study of factors that influence bone formation in farmed Atlantic salmon are highly warranted. We describe here a method by which unspecialised primary cells from salmon white muscle can differentiate to osteoblasts in vitro. We have subsequently used the differentiated cells as a model system to study the effects of two factors that influence bone formation in Atlantic salmon under commercial farming conditions, namely polyunsaturated fatty acids, PUFAs, and temperature. Muscle precursor cells changed their morphology from triangular or spindle-shaped cells to polygonal or cubical cells after 3 weeks in osteogenic medium. In addition, gene expression studies showed that marker genes for osteoblastogenesis; alp, col1a1, osteocalcin, bmp2 and bmp4 increased after 3 weeks of incubation in osteogenic media showing that these cells have differentiated to osteoblasts at this stage. Adding CLA or DHA to the osteoblast media resulted in a reduced PGE2 production and increased expression of osteocalcin. Further, temperature studies showed that differentiating osteoblasts are highly sensitive to increased incubation temperature at early stages of differentiation. Our studies show that unspecialised precursor cells isolated from salmon muscle tissue can be caused to differentiate to osteoblasts in vitro. Furthermore, this model system appears to be suitable for the study of osteoblast biology in vitro.  相似文献   
400.
Superoxide and hydroxyl radicals are implicated in the pathogenesis of Parkinson disease, and induction of lipid peroxidation is an important factor in progression of this disease. Docosahexaenoic acid (DHA) is a key component of the cell membrane, and its peroxidation is inducible due to the double-bond chemical structure. However, DHA has neuroprotective effects. In this study, we examined the effects of intraperitoneal injection (ipi) of DHA ethyl ester (DHA-Et) on 6-hydroxydopamine (6-OHDA)-induced dopamine (DA) reduction in the mouse striatum. DHA-Et ipi for 7 days before and 7 days after a single intracerebroventricular injection of 6-OHDA enhanced 6-OHDA-induced reduction of striatal DA level. On the other hand, ipi of DHA-Et for 7 days increased its concentration in the striatum. Co-injection of DHA-Et and 6-OHDA increased the levels of thiobarbituric acid-reactive substances (a marker of lipid peroxidation) in the striatum. Our results suggest that DHA-Et enhances 6-OHDA-induced DA depression by increasing lipid peroxidation, and that excessive use of DHA-Et may increase the susceptibility of Parkinson disease in animal model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号