首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   6篇
  国内免费   11篇
  2024年   1篇
  2023年   3篇
  2021年   9篇
  2020年   5篇
  2019年   13篇
  2018年   21篇
  2017年   8篇
  2016年   10篇
  2015年   10篇
  2014年   48篇
  2013年   41篇
  2012年   16篇
  2011年   54篇
  2010年   21篇
  2009年   26篇
  2008年   20篇
  2007年   21篇
  2006年   14篇
  2005年   6篇
  2004年   8篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
排序方式: 共有408条查询结果,搜索用时 15 毫秒
361.
Sprague-Dawley rats were fed eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) ethyl esters at the 2% level for 3 weeks to clarify their effects on immune functions. In the rats fed EPA or DHA, serum cholesterol, triglyceride, and phospholipid (PL) levels were significantly lower than those in the rats fed safflower oil. In PL fractions of serum, liver, lung, splenocytes, and peritoneal exudate cells (PEC), increases in linoleic and dihomo-γ-linolenic acid contents and a decrease in arachidonic acid (AA) content were observed in the rats fed EPA or DHA. In addition, the EPA content increased in the rats fed EPA and DHA. In the rats fed EPA or DHA, a decrease of LTB4 productivity and an increase of LTB5 productivity were observed in the PEC, in response to the treatment with 5 μM calcium ionophore A23187 for 20 min. The changes in leukotriene production were more marked in EPA-fed rats than in DHA-fed rats. These results suggest that dietary EPA affects lipid metabolism and leukotriene synthesis more strongly than DHA.  相似文献   
362.
One goal in the field of brain polyunsaturated fatty acid (PUFA) metabolism is to translate the many studies that have been conducted in vitro and in animal models to the clinical setting. Doing so should elucidate the role of PUFAs in the human brain, and effects of diet, drugs, disease and genetics on this role. This review discusses new in vivo radiotracer kinetic and neuroimaging techniques that allow us to do this, with a focus on docosahexaenoic acid (DHA). We illustrate how brain PUFA metabolism is influenced by graded reductions in dietary n-3 PUFA content in unanesthetized rats. We also show how kinetic tracer techniques in rodents have helped to identify mechanisms of action of mood stabilizers used in bipolar disorder, how DHA participates in neurotransmission, and how brain DHA metabolism is regulated by calcium-independent iPLA2β. In humans, regional rates of brain DHA metabolism can be quantitatively imaged with positron emission tomography following intravenous injection of [1-11C]DHA.  相似文献   
363.
Maturational loss of the vitamin C transporter in erythrocytes   总被引:1,自引:0,他引:1  
Erythrocytes have the same intracellular concentration of ascorbate as plasma, which is much lower than that of nucleated cells. To determine why erythrocytes are unable to concentrate ascorbate, we tested for the presence of ascorbate transporters in these cells. Human erythrocytes had very low rates of uptake of radiolabeled ascorbate, which was accounted for by the lack of ascorbate transporter SVCT2 in immunoblots. Using a cell culture model of Friend virus-infected mouse erythroblasts, immunoblots showed that the SVCT2 was present in the erythroblast stages, but was lost following extrusion of the nucleus in the formation of the reticulocyte stage. Rates of specific ascorbate transport correlated with the presence of the SVCT2. These results show that mature erythrocytes fail to concentrate ascorbate due to the loss of SVCT2 during maturation in the bone marrow.  相似文献   
364.
X-linked adrenoleukodystrophy (X-ALD) is a rare neurodegenerative disorder characterized by the accumulation of very-long-chain fatty acids resulting from a β-oxidation defect. Oxidative stress and inflammation are also key components of the pathogenesis. X-ALD is caused by mutations in the ABCD1 gene, which encodes for a peroxisomal half ABC transporter predicted to participate in the entry of VLCFA-CoA into the peroxisome, the unique site of their β-oxidation. Two homologous peroxisomal ABC transporters, ABCD2 and ABCD3 have been proven to compensate for ABCD1 deficiency when overexpressed. Pharmacological induction of these target genes could therefore represent an alternative therapy for X-ALD patients. Since LXR activation was shown to repress ABCD2 expression, we investigated the effects of LXR antagonists in different cell lines. Cells were treated with GSK(17) (a LXR antagonist recently discovered from the GlaxoSmithKline compound collection), 22(S)-hydroxycholesterol (22S-HC, another LXR antagonist) and 22R-HC (an endogenous LXR agonist). We observed up-regulation of ABCD2, ABCD3 and CTNNB1 (the gene encoding for β-catenin, which was recently demonstrated to induce ABCD2 expression) in human HepG2 hepatoma cells and in X-ALD skin fibroblasts treated with LXR antagonists. Interestingly, induction in X-ALD fibroblasts was concomitant with a decrease in oxidative stress. Rats treated with 22S-HC showed hepatic induction of the 3 genes of interest. In human, we show by multiple tissue expression array that expression of ABCD2 appears to be inversely correlated with NR1H3 (LXRα) expression. Altogether, antagonists of LXR that are currently developed in the context of dyslipidemia may find another indication with X-ALD.  相似文献   
365.
Brown adipose tissue (BAT) is a thermogenic organ with a vital function in small mammals and potential as metabolic drug target in humans. By using high-resolution LC-tandem-mass spectrometry, we quantified 329 lipid species from 17 (sub)classes and identified the fatty acid composition of all phospholipids from BAT and subcutaneous and gonadal white adipose tissue (WAT) from female and male mice. Phospholipids and free fatty acids were higher in BAT, while DAG and TAG levels were higher in WAT. A set of phospholipids dominated by the residue docosahexaenoic acid, which influences membrane fluidity, showed the highest specificity for BAT. We additionally detected major sex-specific differences between the BAT lipid profiles, while samples from the different WAT depots were comparatively similar. Female BAT contained less triacylglycerol and more phospholipids rich in arachidonic and stearic acid whereas another set of fatty acid residues that included linoleic and palmitic acid prevailed in males. These differences in phospholipid fatty acid composition could greatly affect mitochondrial membranes and other cellular organelles and thereby regulate the function of BAT in a sex-specific manner.  相似文献   
366.
The preservation of a constant pool of free cholesterol (FC) is critical to ensure several functions of cardiomyocytes. We investigated the impact of the membrane incorporation of arachidonic acid (C20:4 ω6, AA) or docosahexaenoic acid (C22:6 ω3, DHA) as ω6 or ω3 polyunsaturated fatty acids (PUFAs) on cholesterol homeostasis in primary cultures of neonatal rat cardiac myocytes. We measured significant alterations to the phospholipid FA profiles, which had markedly different ω6/ω3 ratios between the AA and DHA cells (13 vs. 1). The AA cells showed a 2.7-fold lower cholesterol biosynthesis than the DHA cells. Overall, the AA cells showed 2-fold lower FC masses and 2-fold higher cholesteryl ester masses than the DHA cells. The AA cells had a lower FC to phospholipid ratio and higher triglyceride levels than the DHA cells. Moreover, the AA cells showed a 40% decrease in ATP binding cassette transporter A1 (ABCA1)-mediated and a 19% decrease in ABCG1-mediated cholesterol efflux than the DHA cells. The differences in cholesterol efflux pathways induced by AA or DHA incorporation were not caused by variations in ABCs transporter expression and were reduced when ABC transporters were overexpressed by exposure to LXR/RXR agonists. These results show that AA incorporation into cardiomyocyte membranes decreased the FC turnover by markedly decreasing the endogenous cholesterol synthesis and by decreasing the ABCA1- and ABCG1-cholesterol efflux pathways, whereas DHA had the opposite effects. We propose that these observations may partially contribute to the beneficial effects on the heart of a diet containing a high ω3/ω6 PUFA ratio.  相似文献   
367.
Fatty acids, and especially long-chain polyunsaturated fatty acids, are biologically important components in the metabolism of vertebrates, including fish. Essential fatty acids (EFA) are those that in a given animal cannot be synthesized or modified from precursors and must therefore be acquired via the diet. Because EFAs are often unevenly distributed in nature, this requirement may drive species to make behavioral or ecological adaptations to avoid malnutrition. This is especially true for fish like the three-spined stickleback (Gasterosteus aculeatus L.) of Upper Lake Constance (ULC), whose recent marine ancestors evolved with access to EFA-rich prey, but which found themselves in an EFA-deficient habitat. An unexpected and unprecedented ecological shift in the ULC stickleback population from the littoral to pelagic zones in 2012 might be linked to EFA availability, triggering ecological release and enabling them to build a hyperabundant population while displacing the former keystone species, the pelagic whitefish Coregonus wartmanni. To test this hypothesis, sticklebacks from the littoral and pelagic zones of ULC were sampled seasonally in two consecutive years, and their stomach contents and fatty acid profiles were analysed. Pelagic sticklebacks were found to possess significantly higher values of an important EFA, docosahexaenoic acid (DHA), especially during autumn. Evaluation of the DHA supply suggests that sticklebacks feeding in the littoral zone during autumn could not meet their DHA requirement, whereas DHA availability in the pelagic zone was surplus to demand. During autumn, pelagic sticklebacks consumed large amounts of DHA-rich prey, that is, copepods, whereas littoral sticklebacks relied mainly mostly on cladocerans, which provide much lower quantities of DHA. Access to pelagic zooplankton in 2012 was possibly facilitated by low densities of previously dominant zooplanktivorous whitefish. The present study offers a convincing physiological explanation for the observed expansion of invasive sticklebacks from the littoral to the pelagic zones of Lake Constance, contributing to a phase shift with severe consequences for fisheries.  相似文献   
368.
369.
The effect of artificial ageing on the relationship between mitochondrial activities and the antioxidant system was studied in soybean seeds (Glycine max L. cv. Zhongdou No. 27). Ageing seeds for 18 d and 41 d at 40 °C reduced germination from 99% to 52% and 0%, respectively. In comparison to the control, malondialdehyde content and leachate conductivity in aged seeds increased and were associated with membrane damage. Transmission electron microscopy and Percoll density gradient centrifugation showed that aged seeds mainly contained poorly developed mitochondria in which respiration and marker enzymes activities were significantly reduced. Heavy mitochondria isolated from the interface of the 21% and 40% Percoll were analyzed. Mitochondrial antioxidant enzymes activities including superoxide dismutase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were significantly reduced in aged seeds. A decrease in total ascorbic acid (ASC) and glutathione (GSH) content as well as the reduced/oxidized ratio of ASC and GSH in mitochondria with prolonged ageing showed that artificial ageing reduced ASC–GSH cycle activity. These results suggested an elevated reactive oxygen species (ROS) level in the aged seeds, which was confirmed by measurements of superoxide radical and hydrogen peroxide levels. We conclude that mitochondrial dysfunction in artificially aged seeds is due to retarded mitochondrial and ASC-GSH cycle activity and elevated ROS accumulation.  相似文献   
370.
There is a worldwide interest in seahorse culture to protect wild populations from human predation for aquaria and to establish an industry in developing countries. This study was undertaken to gather information on the lipid and fatty acid status of wild caught seahorses to inform the development of aquarium diets. Brood size, lipid classes, fatty acids, and pigments were analyzed in newborn Hippocampus erectus juveniles from recently captured pregnant wild males during January–March 2009–2010. The lipids of newborn seahorses are composed of phospholipids (mean 75–80%), free cholesterol (8–10%), cholesterol esters (4–9%), and acylglycerides (3–11%). The main pigments were total carotenoids (mean 58–79 µg/g). The most abundant fatty acids in newborn seahorses were 22:6n-3 (21–27%) and 20:4n-6 (7–9%). Both were higher than levels reported in other seahorses. A factor analysis showed that PC1 (48.7% of variation) was composed of the three main highly unsaturated fatty acids: 20:4n-6, 20:5n-3 and a negative contribution of 22:6n-3. PC2 contributed 18:5n-3 and several branched fatty acids. PC3 contributed 18:2n-6 and 18:3n-3. Each of these three components correlated with different environmental factors. The results suggested that high levels of 22:6n-3 rather than 20:5n-3 could increase juvenile survival and assist them to tolerate salinity changes better. The results also suggest that a diet of live prey enriched with 22:6n-3 would be likely to increase the growth and survival in captivity, at least for this species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号