全文获取类型
收费全文 | 390篇 |
免费 | 6篇 |
国内免费 | 12篇 |
专业分类
408篇 |
出版年
2024年 | 1篇 |
2023年 | 3篇 |
2021年 | 9篇 |
2020年 | 5篇 |
2019年 | 13篇 |
2018年 | 21篇 |
2017年 | 8篇 |
2016年 | 10篇 |
2015年 | 10篇 |
2014年 | 48篇 |
2013年 | 41篇 |
2012年 | 16篇 |
2011年 | 54篇 |
2010年 | 21篇 |
2009年 | 26篇 |
2008年 | 20篇 |
2007年 | 21篇 |
2006年 | 14篇 |
2005年 | 6篇 |
2004年 | 8篇 |
2003年 | 8篇 |
2002年 | 7篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1974年 | 2篇 |
排序方式: 共有408条查询结果,搜索用时 15 毫秒
141.
Plasmalogens are a class of phospholipids carrying a vinyl ether bond in sn-1 and an ester bond in sn-2 position of the glycerol backbone. Although they are widespread in all tissues and represent up to 18% of the total phospholipid mass in humans, their physiological function is still poorly understood. The aim of this review is to give an overview over the current knowledge in plasmalogen biology and pathology with an emphasis on neglected aspects of their involvement in neurological and metabolic diseases. Furthermore a better understanding of plasmalogen biology in health and disease could also lead to the development of better diagnostic and prognostic biomarkers for vascular and metabolic diseases such as obesity and diabetes mellitus, inflammation, neuro-degeneration and cancer. 相似文献
142.
Gunveen Kaur David Cameron-SmithManohar Garg Andrew J. Sinclair 《Progress in lipid research》2011,50(1):28-34
This article summarizes the current knowledge available on metabolism and the biological effects of n-3 docosapentaenoic acid (DPA). n-3 DPA has not been extensively studied because of the limited availability of the pure compound. n-3 DPA is an elongated metabolite of EPA and is an intermediary product between EPA and DHA. The literature on n-3 DPA is limited, however the available data suggests it has beneficial health effects. In vitro n-3 DPA is retro-converted back to EPA, however it does not appear to be readily metabolised to DHA. In vivo studies have shown limited conversion of n-3 DPA to DHA, mainly in liver, but in addition retro-conversion to EPA is evident in a number of tissues. n-3 DPA can be metabolised by lipoxygenase, in platelets, to form ll-hydroxy-7,9,13,16,19- and 14-hydroxy-7,10,12,16,19-DPA. It has also been reported that n-3 DPA is effective (more so than EPA and DHA) in inhibition of aggregation in platelets obtained from rabbit blood. In addition, there is evidence that n-3 DPA possesses 10-fold greater endothelial cell migration ability than EPA, which is important in wound-healing processes. An in vivo study has reported that n-3 DPA reduces the fatty acid synthase and malic enzyme activity levels in n-3 DPA-supplemented mice and these effects were stronger than the EPA-supplemented mice. Another recent in vivo study has reported that n-3 DPA may have a role in attenuating age-related decrease in spatial learning and long-term potentiation. However, more research remains to be done to further investigate the biological effects of this n-3 VLCPUFA. 相似文献
143.
Ascorbate-glutathione cycle of mitochondria in osmoprimed soybean cotyledons in response to imbibitional chilling injury 总被引:2,自引:0,他引:2
Osmopriming treatment of chilling-sensitive soybean (Glycine max L. cv. Zhonghuang-22) seeds for 72 h at 25 °C with polyethylene glycol (PEG8000) solution at −1.5 MPa strongly improves chilling resistance. The aim of the present work was to investigate whether the beneficial effect of osmopriming is associated with restoration of the ascorbate-glutathione (ASC-GSH) cycle of mitochondria in soybean seeds. Compared with the control, both H2O2 and malondialdehyde (MDA) contents in mitochondria of osmoprimed seeds decreased after chilling treatment, and these changes were associated with increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and l-galactono-γ-lactone dehydrogenase (GLDH). However, the activity of dehydroascorbate reductase (DHAR) showed no obvious change during osmopriming treatment. Increased ASC and GSH contents accompanied prolonged osmopriming, and the reduced/oxidized ratios of ASC and GSH increased differently during osmopriming. These results indicate that osmopriming treatment enhances activity of the ASC-GSH cycle of mitochondria, which raises the chilling tolerance in soybean seeds and protects against H2O2 that is generated in mitochondria during imbibition at low temperature. 相似文献
144.
145.
Ludovic GilletSébastien Roger Philippe BougnouxJean-Yves Le Guennec Pierre Besson 《Biochimie》2011,93(1):4-6
Cancers are among the leading causes of death worldwide. Voltage-gated sodium channels, among other ion channels, appear as new molecular players in epithelial cancers. Highly metastatic breast cancer cells express NaV1.5, the main isoform expressed in cardiac cells, where the current generated by the flux of sodium ions is responsible for the excitability. Breast cancer cells are not excitable and the protein activity regulates cell invasiveness, through the modulation of activity of acidic cathepsins, a characteristic involved in the metastatic phenotype. Interestingly, it is known that ω-3 LC-PUFA can exert beneficial effects by preventing post-myocardial infarction arrhythmias and by reducing the incidence of metastatic breast cancer.In this review, we compare the effects of some ω-3 LC-PUFA on NaV1.5 expressed in both cardiac and MDA-MB-231 breast cancer cells. We propose that some of the effects of ω-3 LC-PUFA act through common mechanisms involved in both diseases. 相似文献
146.
Tyburczy C Kothapalli KS Park WJ Blank BS Bradford KL Zimmer JP Butt CM Salem N Brenna JT 《Prostaglandins, leukotrienes, and essential fatty acids》2011,85(6):335-343
This study determined the sensitivity of heart and brain arachidonic acid (ARA) and docosahexaenoic acid (DHA) to the dietary ARA level in a dose–response design with constant, high DHA in neonatal piglets. On day 3 of age, pigs were assigned to 1 of 6 dietary formulas varying in ARA/DHA as follows (% fatty acid, FA/FA): (A1) 0.1/1.0; (A2) 0.53/1.0; (A3–D3) 0.69/1.0; (A4) 1.1/1.0; (D2) 0.67/0.62; and (D1) 0.66/0.33. At necropsy (day 28) higher levels of dietary ARA were associated with increased heart and liver ARA, while brain ARA remained unaffected. Dietary ARA had no effect on tissue DHA accretion. Heart was particularly sensitive, with pigs in the intermediate groups having different ARA (A2, 18.6±0.7%; A3, 19.4±1.0%) and a 0.17% increase in dietary ARA resulted in a 0.84% increase in heart ARA. Further investigations are warranted to determine the clinical significance of heart ARA status in developing neonates. 相似文献
147.
Bernabe-Garcia M Lopez-Alarcón M Blanco-Favela F Mancilla-Ramírez J Mansilla-Olivares A Arredondo-García JL 《Prostaglandins, leukotrienes, and essential fatty acids》2011,85(5):261-266
The use of n-3 polyunsaturated fatty acids in surgical patients has risen by the fact that this may attenuate systemic and acute inflammatory responses secondary to surgical trauma through modulation of inflammatory mediators and cell membrane interactions. Moreover, the inclusion of n-3 fatty acids in clinical trials as part of the therapy in patients, who expect to undergo a surgical stress, suggests benefits on clinical progress. Therefore, the objective of this article is to review data from n-3 polyunsaturated fatty acid effects on biochemical parameters and on reduced length of hospitalization, number of infections, and mortality as main clinical outcomes in human surgical patients. 相似文献
148.
Reed TT 《Free radical biology & medicine》2011,51(7):1302-1319
Lipid peroxidation is a complex process involving the interaction of oxygen-derived free radicals with polyunsaturated fatty acids, resulting in a variety of highly reactive electrophilic aldehydes. Since 1975, lipid peroxidation has been extensively studied in a variety of organisms. As neurodegenerative diseases became better understood, research establishing a link between this form of oxidative damage, neurodegeneration, and disease has provided a wealth of knowledge to the scientific community. With the advent of proteomics in 1995, the identification of biomarkers for neurodegenerative disorders became of paramount importance to better understand disease pathogenesis and develop potential therapeutic strategies. This review focuses on the relationship between lipid peroxidation and neurodegenerative diseases. It also demonstrates how findings in current research support the common themes of altered energy metabolism and mitochondrial dysfunction in neurodegenerative disorders. 相似文献
149.
Human fortilin is a molecular target of dihydroartemisinin 总被引:3,自引:0,他引:3
Dehydroartemisinin (DHA) is an effective anti-malaria agent. Fortilin is an anti-apoptotic molecule overexpressed in many human cancers. Here, we show that DHA binds human fortilin, increases the ubiquitination of fortilin, shortens fortilin's half-life in a proteasome-dependent fashion, and reduces cellular levels of fortilin in varieties of cells. DHA induced DNA fragmentation in U2OS cells in a fortilin-dependent manner. The fortilin-knocked-down cells were less susceptible--and fortilin-overexpressing cells more susceptible--to DHA than were wild-type cells, suggesting that apoptotic effects of DHA are-at least partly-conferred through fortilin. Together, these data suggest that fortilin is a molecular target of DHA. DHA and its derivative may prove to be viable anti-cancer agents in fortilin-overexpressing cancers. 相似文献
150.
Mario Díaz Daniel Pereda de Pablo Catalina Valdés-Baizabal Guido Santos Raquel Marin 《Aging cell》2023,22(8):e13867
“Lipid raft aging” in nerve cells represents an early event in the development of aging-related neurodegenerative diseases, such as Alzheimer's disease. Lipid rafts are key elements in synaptic plasticity, and their modification with aging alters interactions and distribution of signaling molecules, such as glutamate receptors and ion channels involved in memory formation, eventually leading to cognitive decline. In the present study, we have analyzed, in vivo, the effects of dietary supplementation of n-3 LCPUFA on the lipid structure, membrane microviscosity, domain organization, and partitioning of ionotropic and metabotropic glutamate receptors in hippocampal lipid raffs in female mice. The results revealed several lipid signatures of “lipid rafts aging” in old mice fed control diets, consisting in depletion of n-3 LCPUFA, membrane unsaturation, along with increased levels of saturates, plasmalogens, and sterol esters, as well as altered lipid relevant indexes. These changes were paralleled by increased microviscosity and changes in the raft/non-raft (R/NR) distribution of AMPA-R and mGluR5. Administration of the n-3 LCPUFA diet caused the partial reversion of fatty acid alterations found in aged mice and returned membrane microviscosity to values found in young animals. Paralleling these findings, lipid rafts accumulated mGluR5, NMDA-R, and ASIC2, and increased their R/NR proportions, which collectively indicate changes in synaptic plasticity. Unexpectedly, this diet also modified the lipidome and dimension of lipid rafts, as well as the domain redistribution of glutamate receptors and acid-sensing ion channels involved in hippocampal synaptic plasticity, likely modulating functionality of lipid rafts in memory formation and reluctance to age-associated cognitive decline. 相似文献