首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1082篇
  免费   45篇
  国内免费   63篇
  2023年   6篇
  2022年   11篇
  2021年   11篇
  2020年   14篇
  2019年   25篇
  2018年   14篇
  2017年   12篇
  2016年   18篇
  2015年   17篇
  2014年   58篇
  2013年   69篇
  2012年   36篇
  2011年   66篇
  2010年   58篇
  2009年   70篇
  2008年   69篇
  2007年   54篇
  2006年   59篇
  2005年   44篇
  2004年   60篇
  2003年   33篇
  2002年   27篇
  2001年   20篇
  2000年   20篇
  1999年   26篇
  1998年   32篇
  1997年   23篇
  1996年   16篇
  1995年   16篇
  1994年   21篇
  1993年   11篇
  1992年   21篇
  1991年   10篇
  1990年   7篇
  1989年   14篇
  1988年   6篇
  1987年   9篇
  1986年   8篇
  1985年   23篇
  1983年   6篇
  1982年   11篇
  1981年   10篇
  1980年   11篇
  1979年   7篇
  1978年   9篇
  1977年   6篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
排序方式: 共有1190条查询结果,搜索用时 15 毫秒
51.
The 2-carboxy-6-hydroxyoctahydroindole (Choi) moiety is a hallmark of aeruginosins, a class of cyanobacterial derived bioactive linear tetrapeptides that possess antithrombotic activity. The biosynthetic pathway of Choi has yet to be resolved. AerE is a cupin superfamily enzyme that was shown to be involved in the biosynthesis of Choi, but its exact role remains unclear. This study reports the functional characterization and structural analyses of AerE. Enzymatic observation reveals that AerE can dramatically accelerate 1,3-allylic isomerization of the non-aromatic decarboxylation product of prephenate, dihydro-4-hydroxyphenylpyruvate (H2HPP). This olefin isomerization reaction can occur non-enzymatically and is the second step of the biosynthetic pathway from prephenate to Choi. The results of comparative structural analysis and substrate analogue binding geometry analysis combined with the results of mutational studies suggest that AerE employs an induced fit strategy to bind and stabilize the substrate in a particular conformation that is possibly favorable for 1,3-allylic isomerization of H2HPP through coordinate bonds, hydrogen bonds, π–π conjugation interaction and hydrophobic interactions. All of these interactions are critical for the catalytic efficiency.  相似文献   
52.
Thermus thermophilus proline dehydrogenase ( TtProDH) catalyzes the first step in proline catabolism. The thermostable flavoenzyme consists of a distorted triosephosphate isomerase (TIM) barrel and three N‐terminal helices: αA, αB, and αC. Using maltose‐binding protein (MBP) fused constructs, it has been recently demonstrated that helix αC is crucial for TtProDH catalysis and for tetramerization through positioning of helix α8. Here, the structural features that determine the thermostability of TtProDH are reported. Selective disruption of two ion pairs in the dimerization interface of several MBP‐TtProDH variants result in the formation of monomers. The newly created monomers have improved catalytic properties but their melting temperatures are decreased by more than 20 °C. Sequence comparison suggests that one of the ion‐pairs involved in dimerization is unique for ProDHs from Thermus species. In summary, intermolecular ion‐pairs improve the thermostability of TtProDH and a trade‐off is made between thermostability and catalytic activity.  相似文献   
53.
54.
Phosphorylation of types III and IV intermediate filaments (IFs) is known to regulate their organization and function. Phosphorylation of the amino-terminal head domain sites on types III and IV IF proteins plays a key role in the assembly/disassembly of IF subunits into 10 nm filaments, and influences the phosphorylation of sites on the carboxyl-terminal tail domain. These phosphorylation events are largely under the control of second messenger-dependent protein kinases and provide the cells a mechanism to reorganize the IFs in response to the changes in second messenger levels. In mitotic cells, Cdk1, Rho kinase, PAK1 and Aurora-B kinase are believed to regulate vimentin and glial fibrillary acidic protein phosphorylation in a spatio-temporal manner. In neurons, the carboxyl-terminal tail domains of the NF-M and NF-H subunits of heteropolymeric neurofilaments (NFs) are highly phosphorylated by proline-directed protein kinases. The phosphorylation of carboxyl-terminal tail domains of NFs has been suspected to play roles in forming cross-bridges between NFs and microtubules, slowing axonal transport and promoting their integration into cytoskeleton lattice and, in doing so, to control axonal caliber and stabilize the axon. The role of IF phosphorylation in disease pathobiology is discussed.  相似文献   
55.
The apicoplast is a recently discovered, plastid-like organelle present in most apicomplexa. The methylerythritol phosphate (MEP) pathway involved in isoprenoid biosynthesis is one of the metabolic pathways associated with the apicoplast, and is a new promising therapeutic target in Plasmodium falciparum. Here, we check the presence of isoprenoid genes in four coccidian parasites according to genome database searches. Cryptosporidium parvum and C. hominis, which have no plastid genome, lack the MEP pathway. In contrast, gene expression studies suggest that this metabolic pathway is present in several development stages of Eimeria tenella and in tachyzoites of Toxoplasma gondii. We studied the potential of fosmidomycin, an antimalarial drug blocking the MEP pathway, to inhibit E. tenella and T. gondii growth in vitro. The drug was poorly effective even at high concentrations. Thus, both fosmidomycin sensitivity and isoprenoid metabolism differs substantially between apicomplexan species.  相似文献   
56.
57.
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.  相似文献   
58.
The Δ5-3-ketosteroid isomerase from Pseudomonas putida biotype B has been crystallized. The crystals belong to the space group P212121 with unit cell dimensions of a = 36.48 Å, b = 74.30 Å, c = 96.02 Å, and contain one homodimer per asymmetric unit. Native diffraction data to 2.19 Å resolution have been obtained from one crystal at room temperature indicating that the crystals are quite suitable for structure determination by multiple isomorphous replacement.  相似文献   
59.
Abstract A partial genomic library of Streptomyces sp. NCIM 2730 was constructed in Escherichia coli using pUC8 vector and screened for the presence of the d-glucose/xylose isomerase (GXI) gene using an 18-mer mixed oligonucleotide probe complementary to a highly conserved six-amino acid sequence of GXI from actinomycetes. Eight clones which hybridized with the radiolabelled oligoprobe showed the ability to complement xylose isomerase-defective E. coli mutants. The restriction map of the insert from one (pMSG27) of the eight GXI-positive clones showing detectable GXI activity was constructed. GXI-deficient strains of E. coli were able to utilize xylose as the sole carbon source for their growth upon transformation with pMSG27. E. coli JM105 (pMSG27) and E. coli JC1553 (pMSG27) were inducible by IPTG suggesting that the expression of the cloned gene was under the control of the lacZ promoter. Western blot analysis revealed that the cloned gene is expressed as a fusion protein of M r 110. This is the first report of expression of a catalytically active GXI from Streptomyces in Escherichia coli .  相似文献   
60.
Chlorocatechol 1,2-dioxygenase (CC 1,2-DO), chloromuconate cycloisomerase (CMCI), chloromuconolactone isomerase (CMLI), and dienolactone hydrolase (DELH), the key enzymes of a new modified ortho-pathway in Rhodococcus opacus 1CP cells utilizing 2-chlorophenol via a 3-chlorocatechol branch of a modified ortho-pathway, were isolated and characterized. CC 1,2-DO showed the maximum activity with 3-chlorocatechol; its activity with catechol and 4-chlorocatechol was 93 and 50%, respectively. The enzyme of the studied pathway had physicochemical properties intermediate between the pyrocatechase of ordinary and chlorocatechase of modified pathways described earlier for this strain. In contrast to the enzymes investigated earlier, CMCI of the new pathway exhibited high substrate specificity. The enzyme had K m for 2-chloromuconate of 142.86 M, V max = 71.43 U/mg, pH optimum around 6.0, and temperature optimum at 65°C. CMCI converted 2-chloromuconate into 5-chloromuconolactone. CMLI converted 5-chloromuconolactone into cis-dienolactone used as a substrate by DELH; this enzyme did not convert trans-dienolactone. DELH had Km for cis-dienolactone of 200 M, V max = 167 U/mg, pH optimum of 8.6, and temperature optimum of 40°C. These results confirm the existence of a new modified ortho-pathway for utilization of 2-chlorophenol by R. opacus 1CP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号