首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1082篇
  免费   45篇
  国内免费   63篇
  1190篇
  2023年   6篇
  2022年   11篇
  2021年   11篇
  2020年   14篇
  2019年   25篇
  2018年   14篇
  2017年   12篇
  2016年   18篇
  2015年   17篇
  2014年   58篇
  2013年   69篇
  2012年   36篇
  2011年   66篇
  2010年   58篇
  2009年   70篇
  2008年   69篇
  2007年   54篇
  2006年   59篇
  2005年   44篇
  2004年   60篇
  2003年   33篇
  2002年   27篇
  2001年   20篇
  2000年   20篇
  1999年   26篇
  1998年   32篇
  1997年   23篇
  1996年   16篇
  1995年   16篇
  1994年   21篇
  1993年   11篇
  1992年   21篇
  1991年   10篇
  1990年   7篇
  1989年   14篇
  1988年   6篇
  1987年   9篇
  1986年   8篇
  1985年   23篇
  1983年   6篇
  1982年   11篇
  1981年   10篇
  1980年   11篇
  1979年   7篇
  1978年   9篇
  1977年   6篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
排序方式: 共有1190条查询结果,搜索用时 17 毫秒
141.
Two Arabidopsis thaliana cDNAs (IPP1 and IPP2) encoding isopentenyl diphosphate isomerase (IPP isomerase) were isolated by complementation of an IPP isomerase mutant strain of Saccharomyces cerevisiae. Both cDNAs encode enzymes with an amino terminus that may function as a transit peptide for localization in plastids. At least 31 amino acids from the amino terminus of the IPP1 protein and 56 amino acids from the amino terminus of the IPP2 protein are not essential for enzymatic activity. Genomic DNA blot analysis confirmed that IPP1 and IPP2 are derived from a small gene family in A. thaliana. Based on northern analysis expression of both cDNAs occurs predominantly in roots of mature A. thaliana plants grown to the pre-flowering stage.  相似文献   
142.
Human Pin1 is a peptidyl prolyl cis/trans isomerase with a unique preference for phosphorylated Ser/Thr-Pro substrate motifs.Here we report that MCM3 (minichromosome maintenance complex component 3) is a novel target of Pin1. MCM3 interacts directly with the WW domain of Pin1. Proline-directed phosphorylation of MCM3 at S112 and T722 are crucial for the interaction with Pin1. MCM3 as a subunit of the minichromosome maintenance heterocomplex MCM2–7 is part of the pre-replication complex responsible for replication licensing and is implicated in the formation of the replicative helicase during progression of replication. Our data suggest that Pin1 coordinates phosphorylation-dependently MCM3 loading onto chromatin and its unloading from chromatin, thereby mediating S phase control.  相似文献   
143.
Hydroperoxide lyases (HPLs) of the CYP74 family (P450 superfamily) are widely distributed enzymes in higher plants and are responsible for the stress-initiated accumulation of short-chain aldehydes. Fatty acid hydroperoxides serve as substrates for HPLs; however, details of the HPL-promoted conversion are still incompletely understood. In the present work, we report first time the micropreparative isolation and the NMR structural studies of fatty acid hemiacetal (TMS/TMS), the short-lived HPL product. With this aim, linoleic acid 9(S)?hydroperoxide (9(S)?HPOD) was incubated with recombinant melon hydroperoxide lyase (CmHPL, CYP74C2) in a biphasic system of water/hexane for 60?s at 0?°C, pH?4.0. The hexane layer was immediately decanted and vortexed with a trimethylsilylating mixture. Analysis by GC–MS revealed a major product, i.e. the bis-TMS derivative of a hemiacetal which was conclusively identified as 9?hydroxy?9?[(1′E,3′Z)?nonadienyloxy]?nonanoic acid by NMR-spectroscopy. Further support for the hemiacetal structure was provided by detailed NMR-spectroscopic analysis of the bis-TMS hemiacetal generated from [13C18]9(S)?HPOD in the presence of CmHPL. The results obtained provide incontrovertible evidence that the true products of the HPL group of enzymes are hemiacetals, and that the short-chain aldehydes are produced by their rapid secondary chain breakdown. Therefore, we suggest replacing the name “hydroperoxide lyase”, which does not reflect the factual isomerase (intramolecular oxidoreductase) activity, with “hemiacetal synthase” (HAS).  相似文献   
144.
5-Methylthioribose 1-phosphate isomerase (M1Pi) is a crucial enzyme involved in the universally conserved methionine salvage pathway (MSP) where it is known to catalyze the conversion of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P) via a mechanism which remains unspecified till date. Furthermore, although M1Pi has a discrete function, it surprisingly shares high structural similarity with two functionally non-related proteins such as ribose-1,5-bisphosphate isomerase (R15Pi) and the regulatory subunits of eukaryotic translation initiation factor 2B (eIF2B). To identify the distinct structural features that lead to divergent functional obligations of M1Pi as well as to understand the mechanism of enzyme catalysis, the crystal structure of M1Pi from a hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined. A meticulous structural investigation of the dimeric M1Pi revealed the presence of an N-terminal extension and a hydrophobic patch absent in R15Pi and the regulatory α-subunit of eIF2B. Furthermore, unlike R15Pi in which a kink formation is observed in one of the helices, the domain movement of M1Pi is distinguished by a forward shift in a loop covering the active-site pocket. All these structural attributes contribute towards a hydrophobic microenvironment in the vicinity of the active site of the enzyme making it favorable for the reaction mechanism to commence. Thus, a hydrophobic active-site microenvironment in addition to the availability of optimal amino-acid residues surrounding the catalytic residues in M1Pi led us to propose its probable reaction mechanism via a cis-phosphoenolate intermediate formation.  相似文献   
145.
Pin1, a peptidyl prolyl cis/trans isomerase (PPIase), is a potential target molecule for cancer, infectious disease, and Alzheimer’s disease. We established a high-throughput screening method for Pin1 inhibitors, which employs a real-time fluorescence detector. This screening method identified 66 compounds that inhibit Pin1 out of 9756 compounds from structurally diverse chemical libraries. Further evaluations of surface plasmon resonance methods and a cell proliferation assay were performed. We discovered a cell-active inhibitor, TME-001 (2-(3-chloro-4-fluoro-phenyl)-isothiazol-3-one). Surprisingly, kinetic analyses revealed that TME-001 is the first compound that exhibits dual inhibition of Pin1 (IC50 = 6.1 μM) and cyclophilin, another type of PPIase, (IC50 = 13.7 μM). This compound does not inhibit FKBP. This finding suggests the existence of similarities of structure and reaction mechanism between Pin1 and cyclophilin, and may lead to a more complete understanding of the active sites of PPIases.  相似文献   
146.
147.
We used gel electrophoresis and mass spectrometry to investigate differences in protein expression in ovarian tissues from Babesia bovis-infected and uninfected southern cattle tick, Rhipicephalus (Boophilus) microplus. Soluble and membrane proteins were extracted from ovaries of adult female ticks, and analyzed by isoelectric focusing (IEF) and one-dimensional or two-dimensional (2-D) gel electrophoresis. Protein patterns were analyzed for differences in expression between infected and uninfected ticks. 2-D separation of proteins revealed a number of proteins that appeared to be up- or down-regulated in response to infection with Babesia, in particular membrane/membrane-associated proteins and proteins in a low molecular mass range between 6 and 36 kDa. A selection of differentially expressed proteins was subjected to analysis by capillary-HPLC-electrospray tandem mass spectrometry (HPLC-ESI-MS/MS). Among the ovarian proteins that were up-regulated in infected ticks were calreticulin, two myosin subunits, an endoplasmic reticulum protein, a peptidyl-prolyl cistrans isomerase (PPIase), a cytochrome c oxidase subunit, a glutamine synthetase, and a family of Kunitz-type serine protease inhibitors. Among the down-regulated ovarian proteins were another PPIase, a hemoglobin subunit, and a lysozyme. This study is part of an ongoing effort to establish a proteome database that can be utilized to investigate specific proteins involved in successful pathogen transmission.  相似文献   
148.
Park CS  Yeom SJ  Kim HJ  Lee SH  Lee JK  Kim SW  Oh DK 《Biotechnology letters》2007,29(9):1387-1391
The rpiB gene, encoding ribose-5-phosphate isomerase (RpiB) from Clostridium thermocellum, was cloned and expressed in Escherichia coli. RpiB converted d-psicose into d-allose but it did not convert d-xylose, l-rhamnose, d-altrose or d-galactose. The production of d-allose by RpiB was maximal at pH 7.5 and 65°C for 30 min. The half-lives of the enzyme at 50°C and 65°C were 96 h and 4.7 h, respectively. Under stable conditions of pH 7.5 and 50°C, 165 g d-allose l1 was produced without by-products from 500 g d-psicose l−1 after 6 h.  相似文献   
149.
为了研究甘露糖正向筛选体系在巨尾桉遗传转化过程中的有效性,构建了以6-磷酸甘露糖异构酶(6-phosphomannose isomerase,PMI)为筛选标记的pCAMBIA1301植物表达载体,并将该载体通过农杆菌介导的遗传转化转入木本植物巨尾桉中。将获得的阳性植株通过氯酚红(chlorophenol red,CPR)法及PCR检测,桉树遗传转化的阳性率达到26.09%。另外,通过正交试验优化法,对巨尾桉组培快繁体系建立过程中不同浓度激素配比进行了研究,建立起良好的巨尾桉组织培养再生体系,由甘露糖筛选敏感性测试,获得了巨尾桉筛选临界浓度,蔗糖与甘露糖比例为19∶11,优化了巨尾桉遗传转化体系,为今后巨尾桉组织培养与遗传转化研究提供了重要的参考依据。  相似文献   
150.
QM and QM/MM energy calculations have been carried out on an atomic resolution structure of liganded triosephosphate isomerase (TIM) that has an active site proline (Pro168) in a planar conformation. The origin of the planarity of this proline has been identified. Steric interactions between the atoms of the proline ring and a tyrosine ring (Tyr166) on one side of the proline prevent the ring from adopting the up pucker (chi1 is approximately -30 degrees), while the side chain of a nearby alanine (Ala171) forbids the down pucker (chi1 is approximately +30 degrees). To obtain a proline conformation that is in agreement with the experimentally observed planar state, a quantum system of sufficient size is required and should at least include the nearby side chains of Tyr166, Ala171, and Glu129 to provide enough stabilization. It is argued that the current force fields for structure optimization do not describe strained protein fragments correctly. The proline is part of a catalytic loop that closes upon ligand binding. Comparison of the proline conformation in different TIM X-ray structures, indicates that in the closed conformation of TIM the proline is planar or nearly planar, while in the open conformation it is down puckered. This suggests that the planarity possibly plays a role in the overall catalytic cycle of TIM, presumable acting as a reservoir of energy that becomes available upon loop opening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号