首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9098篇
  免费   698篇
  国内免费   258篇
  2023年   146篇
  2022年   182篇
  2021年   296篇
  2020年   303篇
  2019年   345篇
  2018年   403篇
  2017年   262篇
  2016年   238篇
  2015年   269篇
  2014年   496篇
  2013年   622篇
  2012年   349篇
  2011年   464篇
  2010年   387篇
  2009年   459篇
  2008年   430篇
  2007年   552篇
  2006年   409篇
  2005年   314篇
  2004年   245篇
  2003年   298篇
  2002年   263篇
  2001年   162篇
  2000年   136篇
  1999年   146篇
  1998年   125篇
  1997年   129篇
  1996年   122篇
  1995年   111篇
  1994年   115篇
  1993年   102篇
  1992年   99篇
  1991年   97篇
  1990年   57篇
  1989年   49篇
  1988年   36篇
  1987年   49篇
  1986年   36篇
  1985年   93篇
  1984年   100篇
  1983年   55篇
  1982年   75篇
  1981年   60篇
  1980年   79篇
  1979年   51篇
  1978年   55篇
  1977年   38篇
  1976年   35篇
  1975年   33篇
  1974年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
It has been reported that mammalian serum, and to a lower extent mammalian liver, brain, pancreas, udder, and milk, contain glycosylphosphatidylinositolspecific phospholipase D activity. However, the sites of synthesis have not been determined. In order to study in which cells(s) of the organism synthesis of glycosylphosphatidylinositol-specific phospholipase D takes place, we undertook a systematic screening of 12 different bovine tissues. In situ hybridization experiments with a specific anti-sense RNA probe, derived from a bovine liver cDNA, revealed that glycosylphosphatidylinositol-specific phospholipase D mRNA is present in mast cells of the adrenal gland, lung, and liver. On the other hand, our specific probe detected no mRNA in bovine pancreas, brain, and udder, although enzyme activity has been reported in these tissues. Northern blot analysis of total bovine liver RNA demonstrated two distinct glycosylphosphatidylinositol-specific phospholipse D mRNAs of approximately 3.3 kb and 4 kb length suggesting that two forms of the enzyme may exist.  相似文献   
112.
半枝莲中二萜内酯和黄酮化合物的分离和鉴定   总被引:1,自引:0,他引:1  
半枝莲(Scutellaria barbata D.Don)为唇形科黄芩属植物,全草入药,具有清热解毒,化瘀利尿,消肿止痛和抗癌等功效。国内学者报道从全草中分得红花素(carthamidin)、异红花素(isocarthamidin)、印黄芩甙(scutellarein)、β-谷甾醇(β-sitosterol)、硬脂酸(stearic acid)和生物碱。台湾学者从中分离得汉黄芩素(wogonin)、5-羟基-7,8-二甲氧基黄酮(5-hydroxy-7,8-dimethoxyflavone)、半枝莲素(Rivularin)。我们从全草的乙醇提取液中分得两个化合物,经鉴定为汉黄芩素、新穿心莲内酯,该内酯在本植物中属首次发现。  相似文献   
113.
The three-dimensional structure of habitats is a critical component of species' niches driving coexistence in species-rich ecosystems. However, its influence on structuring and partitioning recruitment niches has not been widely addressed. We developed a new method to combine species distribution modelling and structure from motion, and characterized three-dimensional recruitment niches of two ecosystem engineers on Caribbean coral reefs, scleractinian corals and gorgonians. Fine-scale roughness was the most important predictor of suitable habitat for both taxa, and their niches largely overlapped, primarily due to scleractinians' broader niche breadth. Crevices and holes at mm scales on calcareous rock with low coral cover were more suitable for octocorals than for scleractinian recruits, suggesting that the decline in scleractinian corals is facilitating the recruitment of octocorals on contemporary Caribbean reefs. However, the relative abundances of the taxa were independent of the amount of suitable habitat on the reef, emphasizing that niche processes alone do not predict recruitment rates.  相似文献   
114.
脉叶罗汉松化学成分的研究   总被引:2,自引:0,他引:2  
从脉叶罗汉松(Podocarpus neriifolius D.Don)的枝叶中分离到11种化合物,根据光谱数据和物理常数测定,分别鉴定为正三十四烷醇(1)、β-谷甾醇硬脂酸酯(2)、β-谷甾醇(3)、金松双黄酮(sciadopitysin,3)、罗汉松双黄酮 B(podocarpusflavone B,12)、罗波斯塔黄酮-7″-甲醚(robustaflavone-7″-methyl ether,13)罗汉松双黄酮 A(podocarpusflaveone A,14)、罗波斯塔黄酮(robustaflavone,15)、对羟基苯甲酸(p-hydroxyl-benzoic acid,16)、2″-O-鼠李糖扫帚黄甙(2″-O-rhamnosylscoparin,23)和2″-O-鼠李糖牡荆黄甙(2″-O-rhamnosylvitexin,24)。其中,化合物23和24为首次从罗汉松科分得的化合物,化合物8、13和15首次从该植物分离到。  相似文献   
115.
Bone remodelling is mediated by orchestrated communication between osteoclasts and osteoblasts which, in part, is regulated by coupling and anti-coupling factors. Amongst formally known anti-coupling factors, Semaphorin 4D (Sema4D), produced by osteoclasts, plays a key role in downmodulating osteoblastogenesis. Sema4D is produced in both membrane-bound and soluble forms; however, the mechanism responsible for producing sSema4D from osteoclasts is unknown. Sema4D, TACE and MT1-MMP are all expressed on the surface of RANKL-primed osteoclast precursors. However, only Sema4D and TACE were colocalized, not Sema4D and MT1-MMP. When TACE and MT1-MMP were either chemically inhibited or suppressed by siRNA, TACE was found to be more engaged in shedding Sema4D. Anti-TACE-mAb inhibited sSema4D release from osteoclast precursors by ~90%. Supernatant collected from osteoclast precursors (OC-sup) suppressed osteoblastogenesis from MC3T3-E1 cells, as measured by alkaline phosphatase activity, but OC-sup harvested from the osteoclast precursors treated with anti-TACE-mAb restored osteoblastogenesis activity in a manner that compensates for diminished sSema4D. Finally, systemic administration of anti-TACE-mAb downregulated the generation of sSema4D in the mouse model of critical-sized bone defect, whereas local injection of recombinant sSema4D to anti-TACE-mAb-treated defect upregulated local osteoblastogenesis. Therefore, a novel pathway is proposed whereby TACE-mediated shedding of Sema4D expressed on the osteoclast precursors generates functionally active sSema4D to suppress osteoblastogenesis.  相似文献   
116.
Thermostable direct hemolysin (TDH) is a ~19 kDa, hemolytic pore-forming toxin from the gram-negative marine bacterium Vibrio parahaemolyticus, one of the causative agents of seafood-borne acute gastroenteritis and septicemia. Previous studies have established that TDH exists as a tetrameric assembly in physiological state; however, there is limited knowledge regarding the molecular arrangement of its disordered N-terminal region (NTR)—the absence of which has been shown to compromise TDH's hemolytic and cytotoxic abilities. In our current study, we have employed single-particle cryo-electron microscopy to resolve the solution-state structures of wild-type TDH and a TDH construct with deletion of the NTR (NTD), in order to investigate structural aspects of NTR on the overall tetrameric architecture. We observed that both TDH and NTD electron density maps, resolved at global resolutions of 4.5 and 4.2 Å, respectively, showed good correlation in their respective oligomeric architecture. Additionally, we were able to locate extra densities near the pore opening of TDH which might correspond to the disordered NTR. Surprisingly, under cryogenic conditions, we were also able to observe novel supramolecular assemblies of TDH tetramers, which we were able to resolve to 4.3 Å. We further investigated the tetrameric and inter-tetrameric interaction interfaces to elaborate upon the key residues involved in both TDH tetramers and TDH super assemblies. Our current structural study will aid in understanding the mechanistic aspects of this pore-forming toxin and the role of its disordered NTR in membrane interaction.  相似文献   
117.
Nonalcoholic fatty liver disease (NAFLD) is a strong stimulant of cardiovascular diseases, affecting one-quarter of the world's population. TBC1 domain family member 25 (TBC1D25) regulates the development of myocardial hypertrophy and cerebral ischemia–reperfusion injury; however, its effect on NAFLD/nonalcoholic steatohepatitis (NASH) has not been reported. In this study, we demonstrated that TBC1D25 expression is upregulated in NASH. TBC1D25 deficiency aggravated hepatic steatosis, inflammation, and fibrosis in NASH. In vitro tests revealed that TBC1D25 overexpression restrained NASH responses. Subsequent mechanistic validation experiments demonstrated that TBC1D25 interfered with NASH progression by inhibiting abnormal lipid accumulation and inflammation. TBC1D25 deficiency significantly promoted NASH occurrence and development. Therefore, TBC1D25 may potentially be used as a clinical therapeutic target for NASH treatment.  相似文献   
118.
Enzyme IIA and HPr are central regulatory proteins of the bacterial phosphoenolpyruvate:sugar phosphotransferase (PTS) system. Three-dimensional structures of the glucose enzyme IIA domain (IIAglc) and HPr of Bacillus subtilis and Escherichia coli have been studied by both X-ray crystallography and Nuclear Magnetic Resonance (NMR) Spectroscopy. Phosphorylation of HPr of B. subtilis and IIAglc of E. coli have also been characterized by NMR spectroscopy. In addition, the binding interfaces of B. subtilis HPr and IIAglc have been identified from backbone chemical shift changes. This paper reviews these recent advances in the understanding of the three-dimensional structures of HPr and IIAglc and their interaction with each other. © 1993 Wiley-Liss, Inc.  相似文献   
119.
Macrophage colony stimulating factor (CSF-1) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are potent inducers of macrophage differentiation. Both appear to modulate protein phosphorylation, at least in part, through protein kinase C (PKC) raising the question as to whether they concurrently impact on macrophage-like cells. In this regard, we utilized the CSF-1 dependent murine macrophage-like line BAC 1.25F5. CSF-1 treatment of these cells for 30 min leads to particular phosphorylation of a 165 kDa protein, the putative CSF-1 receptor, and a 210 kDa moiety. 1,25(OH)2D3 exposure for 24 h prior to addition of CSF-1 enhances phosphorylation of the 165 kDa species and, especially, the 210 kDa protein. Phosphorylation of the latter protein is 1,25(OH)2D3 dose- and time-dependent and the molecule is specifically immunoprecipitated with a rabbit polyclonal anti-talin antibody. Experiments with okadaic acid show that the enhanced phosphorylation of talin does not result from serine phosphatase inhibition. CSF-1 and 1,25(OH)2D3, alone or in combination, do not increase talin protein expression. The tyrosine kinase inhibitor, genestein, blocks 1,25(OH)2D3/CSF-1 induced phosphorylation of the putative CSF-1 receptor but has no effect on talin phosphorylation which occurs exclusively on serine. In contrast to genestein, staurosporin, an inhibitor of PKC, inhibits phosphorylation of talin. Moreover, exposure of 1,25(OH)2D3 pretreated cells to phorbol 12-myristate 13-acetate (PMA) in place of CSF-1 also prompts talin phosphorylation. Finally, 1,25(OH)2D3 enhances 3[H]PDBu binding, indicating that the steroid increases PMA receptor capacity. Thus, CSF-1 and 1,25(OH)2D3 act synergistically via PKC to phosphorylate talin, a cytoskeletal-associated protein.  相似文献   
120.
To investigate the role of proline in defining β turn conformations within cyclic hexa- and pentapeptides we synthesized and determined the conformations of a series of L - and D -proline-containing peptides by means of 2D NMR spectroscopy and restrained molecular dynamics simulations. Due to cis/trans isomerism the L -proline peptides adopt at least two different conformations that are analyzed and compared to the structures of the corresponding D -proline peptides. The cis conformations of the compounds cyclo(-Pro-Ala-Ala-Pro-Ala-Ala-), cyclo(-Arg-Gly-Asp-Phe-Pro-Gly-), cyclo(-Arg-Gly-Asp-Phe-Pro-Ala-), cyclo(-Pro-Ala-Ala-Ala-Ala--), and cyclo(-Pro-Ala-Pro-Ala-Ala-) form uncommon βVI turns that mimic the turn geometries found in crystallographically refined protein structures at such a detailed level that even preferred side chain orientations are reproduced. The ratios of the cis/trans isomers are analyzed in terms of the steric demand of the proline-following residue. The conformational details derived from this study illustrate the importance of the examination of small model compounds derived from protein loop regions, especially if bioactive recognition sequences, such as RGD (Arg-Gly-Asp), are incorporated. © 1993 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号