首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4769篇
  免费   457篇
  国内免费   1102篇
  2024年   41篇
  2023年   157篇
  2022年   216篇
  2021年   241篇
  2020年   238篇
  2019年   319篇
  2018年   213篇
  2017年   237篇
  2016年   195篇
  2015年   268篇
  2014年   277篇
  2013年   351篇
  2012年   184篇
  2011年   291篇
  2010年   244篇
  2009年   253篇
  2008年   284篇
  2007年   239篇
  2006年   258篇
  2005年   254篇
  2004年   194篇
  2003年   196篇
  2002年   168篇
  2001年   105篇
  2000年   87篇
  1999年   86篇
  1998年   99篇
  1997年   69篇
  1996年   70篇
  1995年   59篇
  1994年   45篇
  1993年   53篇
  1992年   44篇
  1991年   33篇
  1990年   27篇
  1989年   23篇
  1988年   24篇
  1987年   18篇
  1986年   17篇
  1985年   16篇
  1984年   26篇
  1983年   18篇
  1982年   22篇
  1981年   18篇
  1980年   11篇
  1979年   12篇
  1977年   6篇
  1976年   5篇
  1975年   4篇
  1973年   5篇
排序方式: 共有6328条查询结果,搜索用时 31 毫秒
21.
The mechanism of therapeutic activity of recombinant murine interferon-gamma (rMu IFN-gamma) and the IFN inducer polyinosinic-polycytidylic acid solubilized with poly-L-lysine in carboxy methyl cellulose (pICLC) in treating metastatic disease was investigated by comparing effector cell augmentation with therapeutic activity in mice bearing experimental lung metastases (B16-BL6 melanoma). Effector cell functions in spleen, peripheral blood, and lung (the organ with tumor) were tested after 1 and 3 weeks of rMu IFN-gamma or pICLC administration (intravenous, three times a week). In these studies, natural killer (NK), lymphokine-activated killer (LAK), cytolytic T lymphocytes (CTL) (against specific and nonspecific targets), and macrophage tumoricidal and tumoristatic activities were measured. rM IFN-gamma and pICLC had therapeutic activity and immunomodulatory activity in most assays of immune function examined. Specific CTL activity of pulmonary parenchymal mononuclear cells (PPMC), but not in splenocytes or peripheral blood lymphocytes (PBL), during week 3 and not during week 1, correlated with the therapeutic activity of rMu IFN-gamma and of pICLC. Macrophage tumoricidal activity in PPMC, but not in alveolar macrophages, also correlated with the therapeutic activity of rMu IFN-gamma, but the opposite was true for the therapeutic activity of pICLC. NK activity of PPMC, but not of splenocytes or PBL, during week 1 correlated with the therapeutic activity of pICLC; in contrast, NK activity at any site did not correlate with the therapeutic activity of rMu IFN-gamma. LAK activity at any site did not correlate with the therapeutic activity of either agent.  相似文献   
22.
Usually the toxicity of superoxide is attributed lo its ability to reduce metal ions and subsequently reoxidation of the metal by hydrogen peroxide yields deleterious oxidizing species. As many other nontoxic biological reductants reduce metal compounds, we suggest that part of the mechanism of superoxide toxicity results from its ability to oxidize metal ions bound to biological targets, which subsequently degrade the target via an intramolecular electron Transfer reaction.  相似文献   
23.
Recent crystallographic studies on the mutant human hemoglobin Ypsilanti (beta 99 Asp-->Tyr) have revealed a previously unknown quaternary structure called "quaternary Y" and suggested that the new structure may represent an important intermediate in the cooperative oxygenation pathway of normal hemoglobin. Here we measure the oxygenation and subunit assembly properties of hemoglobin Ypsilanti and five additional beta 99 mutants (Asp beta 99-->Val, Gly, Asn, Ala, His) to test for consistency between their energetics and those of the intermediate species of normal hemoglobin. Overall regulation of oxygen affinity in hemoglobin Ypsilanti is found to originate entirely from 2.6 kcal of quaternary enhancement, such that the tetramer oxygenation affinity is 85-fold higher than for binding to the dissociated dimers. Equal partitioning of this regulatory energy among the four tetrameric binding steps (0.65 kcal per oxygen) leads to a noncooperative isotherm with extremely high affinity (pmedian = .14 torr). Temperature and pH studies of dimer-tetramer assembly and sulfhydryl reaction kinetics suggest that oxygenation-dependent structural changes in hemoglobin Ypsilanti are small. These properties are quite different from the recently characterized allosteric intermediate, which has two ligands bound on the same side of the alpha 1 beta 2 interface (see ref. 1 for review). The combined results do, however, support the view that quaternary Y may represent the intermediate cooperativity state of normal hemoglobin that binds the last oxygen.  相似文献   
24.
A step leading to the formation of the covalent complexes between porcine pancreatic elastase (PPE) and 7-[(alkylcarbamoyl)amino]-4-chloro-3-ethoxyisocoumarins (alkylHNCO-EICs) is the formation of the noncovalent Michaelis complex. No average structures are available for the Michaelis complexes of PPE with alkylHNCO-EICs. We present the results of an initial step in obtaining these structures and have determined kinetic constants as well. The kinetic results indicate that formation of the Michaelis complex is what differentiates the effectiveness of these inhibitors in inactivating PPE. The structural and kinetic results together suggest that the structure of the Michaelis complex is necessary for the design of potent alkylHNCO-EIC inhibitors of PPE. Two novel alkylHNCO-EICs are predicted to be the best inhibitors of this series. An alternate mechanism for serine protease inhibition is also proposed. Evidence for, and studies that may add support to, the hypothesized mechanism are discussed.  相似文献   
25.
The three-dimensional structure of a modified human lysozyme (HL), Glu 53 HL, in which Asp 53 was replaced by Glu, has been determined at 1.77 A resolution by X-ray analysis. The backbone structure of Glu 53 HL is essentially the same as the structure of wild-type HL. The root mean square difference for the superposition of equivalent C alpha atoms is 0.141 A. Except for the Glu 53 residue, the structure of the active site region is largely conserved between Glu 53 HL and wild-type HL. However, the hydrogen bond network differs because of the small shift or rotation of side chain groups. The carboxyl group of Glu 53 points to the carboxyl group of Glu 35 with a distance of 4.7 A between the nearest carboxyl oxygen atoms. A water molecule links these carboxyl groups by a hydrogen bond bridge. The active site structure explains well the fact that the binding ability for substrates does not significantly differ between Glu 53 HL and wild-type HL. On the other hand, the positional and orientational change of the carboxyl group of the residue 53 caused by the mutation is considered to be responsible for the low catalytic activity (ca. 1%) of Glu 53 HL. The requirement of precise positioning for the carboxyl group suggests the possibility that the Glu 53 residue contributes more than a simple electrostatic stabilization of the intermediate in the catalysis reaction.  相似文献   
26.
We report the X-ray analysis at 2.0 A resolution for crystals of the aspartic proteinase endothiapepsin (EC 3.4.23.6) complexed with a potent difluorostatone-containing tripeptide renin inhibitor (CP-81,282). The scissile bond surrogate, an electrophilic ketone, is hydrated in the complex. The pro-(R) (statine-like) hydroxyl of the tetrahedral carbonyl hydrate is hydrogen-bonded to both active-site aspartates 32 and 215 in the position occupied by a water in the native enzyme. The second hydroxyl oxygen of the hydrate is hydrogen-bonded only to the outer oxygen of Asp 32. These experimental data provide a basis for a model of the tetrahedral intermediate in aspartic proteinase-mediated cleavage of the amide bond. This indicates a mechanism in which Asp 32 is the proton donor and Asp 215 carboxylate polarizes a bound water for nucleophilic attack. The mechanism involves a carboxylate (Asp 32) that is stabilized by extensive hydrogen bonding, rather than an oxyanion derivative of the peptide as in serine proteinase catalysis.  相似文献   
27.
Summary Burkitt lymphoma (BL) lines can be grouped according to phenotypic characteristics. Group I cells exhibit the phenotype of resting B cells and grow as single cells. Such lines can be Epstein-Barr-virus(EBV)-negative or -positive. Group II and group III cells are always EBV-positive, they express B cell activation markers, grow in aggregates and resemble in varying degrees lymphoblastoid cell lines (LCL). We studied three groups of BL lines for their capacity to interact with allogeneic lymphocytes. The results showed that as long as the lines have the group I phenotype, they do not stimulate allogeneic T lymphocytes irrespective whether they carry the EBV genome. The group II and III cells are stimulatory. Generally there was no correlation between sensitivity to lymphocyte-mediated lysis and the phenotype of the lines. In one set of lines, the group I cells had higher sensitivity to both natural killer and lymphokine-activated killer effectors compared to the group II or III lines. However, such correlation could not be seen with the other two sets of lines. Among the phenotypic features investigated, expression of the adhesion molecules LFA-1 and LFA-3 correlated with the tendency for cell aggregation.  相似文献   
28.
Summary The nephridial nerve cells of the leech, Hirudo medicinalis, 34 sensory cells, each associated with one nephridium, are sensitive to changes in extracellular Cl- concentration, an important factor in ion homeostasis. Using single-electrode current- and voltage clamp and ion substitution techniques, the specificity and mechanism of Cl- sensitivity of the nephridial nerve cell was studied in isolated preparations. Increase of the normally low external Cl- concentration leads to immediate and sustained hyperpolarization, decrease of the frequency of bursts and decrease of membrane conductance. The response is halogen specific: Cl- can be replaced by Br, but not by organic mono- or divalent anions or inorganic divalent anions.At physiological Cl- concentrations (36mM extra-cellular Cl-), the nephridial nerve cell has a high resting conductance for Cl- and the membrane potential is governed by Cl-. In high extracellular Cl- concentrations (110–130 mM), membrane conductance is low, most likely due to the gating off of Cl- channels. Under these conditions, membrane potential is dominated by the K+ distribution and the nephridial nerve cell hyperpolarizes towards EK.Abbreviations NNC nephridial nerve cell - V m membrane potential - E Cl(k) equilibrium potential for Cl (K) - IV-curve current-voltage relationship  相似文献   
29.
Summary Peripheral blood lymphocytes were cultured for 5 days with allogeneic tumor cells (allogeneic mixed lymphocyte/tumor cell culture), and subsequently cultured with recombinant interleukin-2 for 12 days. These cultured cells were found to be cytotoxic to autologous tumor cells. Results of two-color analysis using monoclonal antibodies to cell markers showed that more than 80% of their cultured cells were CD3+ cells, and CD4+ cells showed a higher distribution than CD8+ cells. However, CD8+ cells had a much higher killing activity with autologous tumor than did CD4+ cells, when estimated by an elimination study using monoclonal antibodies to T cell phenotypes and complement. The cold-target inhibition test showed that the cytotoxicity of these cells for autologous tumor cells was inhibited by unlabeled autologous tumor cells but not by unlabeled stimulator cells. Furthermore, about 40% of the cytotoxicity was suppressed by blocking of HLA class I antigen with a monoclonal antibody on autologous tumor cells. Thus, cytotoxic activity of lymphocytes to autologous tumor restricted by target cell HLA class I antigen is possibly induced by allogeneic tumor-stimulation.  相似文献   
30.
Summary The voltage-dependence of channel formation by alamethicin and its natural analogues can be described by a dipole flip-flop gating model, based on electric field-induced transbilayer orientational movements of single molecules. These field-induced changes in orientation result from the large permanent dipole moment of alamethicin, which adopts -helical conformation in hydrophobic medium. It was, therefore, supposed that the only structural requirement for voltage-dependent formation of alamethicin-type channels might be a rigid lipophilic helical segment of minimum length.In order to test this hypothesis we synthesized a family of lipophilic polypeptides—Boc-(Ala-Aib-Ala-Aib-Ala) n -OMe,n=1–4—which adopt -helical conformation forn=2–4 and studied their interaction with planar lipid bilayers. Surprisingly, despite their large difference in chain length, all four polypeptides showed qualitatively similar behavior. At low field strength of the membrane electric field these polypeptides induce a significant, almost voltage-independent increase of the bilayer conductivity. At high field strength, however, a strongly voltage-dependent conductance increase occurs similar to that observed with alamethicin. It results from the opening of a multitude of ion translocating channels within the membrane phase.The steady-state voltage-dependent conductance depends on the 8th–9th power of polypeptide concentration and involves the transfer of 4–5 formal elementary charges. From the power dependences on polypeptide concentration and applied voltage of the time constants in voltage-jump current-relaxation experiments, it is concluded that channels could be formed from preexisting dodecamer aggregates by the simultaneous reorientation of six formal elementary charges. Channels exhibit large conductance values of several nS, which become larger towards shorter polypeptide chain length. A mean channel diameter of 19 Å is estimated corresponding roughly to the lumen diameter of a barrel comprised of 10 -helical staves. Similar to experiments with the N-terminal Boc-derivative of alamethicin we did not observe the burst sequence of nonintegral conductance steps typical of natural (N-terminal Ac-Aib)-alamethicin. Saturation in current/voltage curves as well as current inactivation in voltage-jump current-relaxation experiments are found. This may be understood by assuming that channels are generated as dodecamers but, while reaching the steady state, reduce their size to that of an octamer or nonamer. We conclude that the overall behavior of these synthetic polypeptides is very similar to that of alamethicin. They exhibit the same concentration and voltage-dependences but lack the stabilizing principle of resolved channel states characteristic of alamethicin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号